

# K.C.E.Society's MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Jayashri D. Bhirud

FACULTY: Science DEPARTMENT: Chemistry

CLASS: S.Y. B.Sc SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH- 232: Organic Chemistry Chemistry-III

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|
| June      |                                                                                                                                                                                                                                                                                                  |                               |         |
| July      |                                                                                                                                                                                                                                                                                                  |                               |         |
| August    |                                                                                                                                                                                                                                                                                                  |                               |         |
| September | UNIT III: Heterocyclic Compound Classification and nomenclature, Structure, aromaticity in 5-numbered rings containing one heteroatom (Furan, Pyrrole, Thiophene). Synthesis: Paal-Knorr furan synthesis, Knorr pyrrole synthesis, Paal-Knorr Thiophene Synthesis.                               | 5h                            |         |
| October   | Reactions with Mechanism: nitration sulphonation, Friedel-Crafts Acylation of Furan, Pyrrole, Thiophene and UNIT II: Steriochemistry conformational and configurational isomers  Geometrical isomerism: cis—trans and, syn-anti isomerism E/Z notations, with Cahn—Ingold—Prelog priority rules. | 5h                            |         |

| November | <b>UNIT II: Steriochemistry Optical Isomerism:</b> Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral centres, diastereomers, meso structures, Racemic mixture and methods of resolution. Absolute configuration, R/S designations with Cahn–Ingold– Prelog priority rules. | 5h |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|          | Conformational isomerism: Factor affecting on stability of Conformation, conformational structure and stability of ethane, butane, cyclohexane, chair and boat forms, axial and equatorial bonds in cyclohexane, factors affecting stability of conformations. Baeyer's angle strain theory.  Internal Examination                |    |  |
| December |                                                                                                                                                                                                                                                                                                                                   |    |  |



#### K.C.E.Society's

#### MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

# \_ TEACHING PLAN \_\_

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Jayashri D. Bhirud

FACULTY: Science DEPARTMENT: Chemistry

CLASS: **S.Y. B.Sc** SUBJECT: Chemistry PAPER CODE and TITLE OF PAPER: **CH- 242 Inorganic Chemistry-II** 

#### **SECOND TERM**

| MONTH    | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|
| February | Unit I Basic Concept of Coordination Chemistry  A) Introduction, Double salt's and coordination compounds, coordination complexes and complex ions, coordination number, Unidentate, bidentate and poly-dentate ligands, chelating ligands and chelates, charge on complex or complex ion, physical methods use in the study of complexes, Nomenclature of coordination compound.                                                                                                                                  | 8h                            |         |
| March    | B)Werners Theory — Assumptions, Isomerism, EAN rule, stability of complexes ionand Factors affecting stability of complex ion, stereochemistry of coordination compoundwith coordination Number 4 and 6, Isomerism in coordination compounds.  UNIT II: d-block Elements and Their Properties Elements of first, second and third transition series, General characteristics of d-block elementsa) Metallic character b) Molar volume and densities c)                                                             | 8h                            |         |
| April    | Atomic radii d) Ionic Radii  UNIT II: d-block Elements and Their Propertie  Melting and boiling points f) Ionization Energies g) Reactivity h) Oxidation statesi) Standard electrode potential j) Reducing Properties k) Colour l) Magnetic propertiesm) Catalytic Properties n) Tendency to form Complexes  UNIT III: Acids, Bases and Solvent Chemistry A) Introduction, Terms- Solvent, Solute, Solution, Solvation & Hydration, Dielectric Constant, Non-aqueous solvents, classification, chemistry of liquid | 8h                            |         |

|       | ammonia,N2O4 and BrF3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| May   | <ul> <li>UNIT III: Acids, Bases and Solvent Chemistry</li> <li>B) Donor and acceptor properties of solvent, Levelling &amp; Differentiating Solvents, Co-Solvating Agents.</li> <li>C) Molten salts &amp; their classification, Uses, solvents for electrochemical reactions, purity of solvents.</li> <li>D) Definition and approaches- i) solvent system concept – Merits/Advantages, Limitations ii) Lux-flood concept &amp; its application iii) Lewis concept-Limitations, Merits etc. iv)Generalized Acid-base concepts, Advantages, Limitations.</li> <li>E) Hard and soft acids and bases: definitions, Pearson HSAB concept.</li> <li>Internal Examination</li> </ul> | 6h |  |
| March |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |



# K.C.E.Society's MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

# **TEACHING PLAN**

ACADEMIC YEAR: 2020-21

NAME OF TEACHER: Dr. Jayashri D. Bhirud

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc. II SUBJECT: M.Sc II Organic Chemistry

PAPER CODE and TITLE OF PAPER: CHO-302: Steriochemistry

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                                                                            | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
| July      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
| August    | Unit I: Fundamentals in Stereochemistry  Measurement of optical activity, optical activity due to stereoplane, helicity, enantiomeric excess, determination of optical purity, Absolute and relative stereochemistry, Investigating the stereochemistry of a compound, Chiral compounds with no stereogenic centres. Conformations of Ethane and n-butane: Restricted rotation about single bond. Origin of conformational energy, Angle and Pitzer Strain.  | 09                            |             |
| September | Unit III: Stereochemistry of six membered rings Conformational analysis of cyclohexane (structure associated with energy), Monosubstituted cyclohexane, 1, 2-disubstituted with same substituent (e.g. 1, 2-Dimethylcyclohexane), with two different substituents (e.g. 1-isopropyl-2-dimethyl cyclohexane), 1, 2-disubstituted cyclohexane (e.g. 1, 3-Dimethylcyclohexane). Conformations of heterocycles. Conformations of common sugars. Anomeric effect. | 16                            |             |
| October   | Stereochemistry of polycyclic compounds  Norboranes (exo, endo, syn and anti nomenclature), NGP reactions in Norbornane, Hydrindanes (Bicyclo [4.3.0] Nonane, fused rings in steroids nucleus, and bridge alkaloids.  Unit II: Asymmetric synthesis and its applications Asymmetric synthesis with chiral substrates - Cram's rule, FelkinAnh rule, Cram's chelate model, use of chiral auxiliaries,.  First Internal Examination Seminar                    | 16                            |             |

| November | chiral reagents and catalysts in asymmetric synthesis. Enantiomeric Excess and Optical Purity.Stereoselective Reactions: aldol reactions (Zimmermann traxler model), asymmetric hydrogenation (BINAP), asymmetric epoxidation (+DET/-DET) and asymmetric dihydroxylation (DHQD) 2PHAL/(DHQ) 2PHAL. Second Internal Examination Assingment | 08 |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| December | Unit IV: ORD and CD Linearly and circularly polarized light, Circular birefringence and circular dichroism, ORD and CD curves, Cotton effect and its applications, The Octant rule and the axial α–haloketone rule with applications.  Assignment                                                                                         | 11 |  |



# K.C.E.Society's MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

# TEACHING PLAN

ACADEMIC YEAR: 2020-21

NAME OF TEACHER: Dr. Jayashri D. Bhirud

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc. II SUBJECT: M.Sc II Organic Chemistry

PAPER CODE and TITLE OF PAPER: **CHO-305A: A) Physical methods in structure determination** 

ueteriiiiauoi

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|
| June      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |         |
| July      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |         |
| August    | Unit I: <sup>1</sup> H-NMR Spectroscopy Principle of NMR, spin-spin coupling, (n+1) rule, coupling constant, vicinal and germinal coupling, long range coupling, factors affecting coupling constant, first order spectra, More complex spin-spin system like AB, AX, AX2, ABX, AMX, ABC. Proton exchange reaction and hydrogen bonding, chemical exchange, rotation about single bond with partial double bond character, simplification of complex spectradouble resonance, shift reagents, Nuclear Over- Hauser effect (NOE), Deuterium exchange, solvent effects, Detection of solvent peaks in <sup>1</sup> H NMR spectra, NMR of intra and intermolecular hydrogen bond, C-H-N, C-H-O, Ar-HO=C.  Applications of <sup>1</sup> H NMR: Magnetic Resonance Imaging (MRI). Problems Based on <sup>1</sup> H NMR spectroscopy.  MCQ based test | 16                            |         |
| September | Unit II: <sup>13</sup> C NMR spectroscopy Elementary ideas, Instrumental difficulties, Proton decoupled spectra, off-resonance technique, Chemical shifts of solvents, chemical shift of carbons, factors affecting on chemical shifts, calculations of chemical shifts of alkane, olefin, alkyne, aromatic, Heteroaromatic, carbonyl carbons, oxime carbon and nitrile carbon, chemical shift features of hydrocarbons, effect of substituents on chemical shifts. Problems based on <sup>13</sup> C NMR spectroscopy. NMR spectroscopy of Nuclei other <sup>1</sup> H and <sup>13</sup> C. Assignment                                                                                                                                                                                                                                         | 16                            |         |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| October  | Two dimensional NMR spectroscopy (2D NMR)  1H-1H COSY, 13C-1H (HETCOR, HMQC, HMBC), 13C-13C INADEQUATE, Interpretation of 2D spectra and examples.  Unit III: Electron Spin Resonance Spectroscopy  Introduction, basic principle, zero field splitting and kramers degeneracy, factors effecting the "g" values, hyperfying splitting, determination of "g" values. Instumentation, working of instruments, sensitivity, concentration, choice of solvent. Presentation of ESR spectra, application of ESR to study the free radicals, structure determination, reaction | 09 |  |
|          | velocities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |
|          | First Internal Examination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |
| November | Unit IV: Mass Spectrometry Instrumentation, various methods of ionization (field ionization, field desorption, ESI, FAB, MALDI), different detectors [magnetic analyzer, ion cyclotron analyzer, Quadrupoule mass filter, time of flight (TOF)]. Mass Spectral fragmentation of Organic compounds containing common functional groups, Nitrogen rule, McLafferty rearrangement, Molecular Ion peak.  Second Internal Examination                                                                                                                                          | 09 |  |
| December | Metastable peak, isotope peaks, Mass spectral fragmentation of organic compounds with respect of their structure determination. Problem based on Mass Spectrometry.  Unit V: Problems based on U.V., I.R., NMR, CMR, Mass and 2D NMR spectroscopy  a) Problems based on joint application of U.V., I.R., NMR, CMR, Mass and 2D NMR spectroscopy b) Determination of structure of organic compounds from U.V., I.R., NMR, CMR, Mass and 2D NMR spectra.  Assignment                                                                                                        | 10 |  |



#### K.C.E.Society's

#### MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

# TEACHING PLAN

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Jayashri Dinkar Bhirud

FACULTY: Science DEPARTMENT: Chemistry CLASS: MSc-II SUBJECT: Organic Chemistry

PAPER CODE and TITLE OF PAPER: CHO-401 Natural Product

#### **SECOND TERM**

|        |                                                                           | 110.00                        |         |
|--------|---------------------------------------------------------------------------|-------------------------------|---------|
| MONTH  | THEORY / PRACTICALS TO BE COVERED                                         | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|        | Unit III: Multi-step synthesis of natural products                        | 12h                           |         |
|        | Synthesis of the following natural products with special                  |                               |         |
|        | reference to reagents used,                                               |                               |         |
|        | stereochemistry and functional group transformations:                     |                               |         |
| N ( 1- | i) Reserpine (Woodward synthesis) ii)Longifoline (Corey                   |                               |         |
| March  | synthesis) iii) Estrone iv) Strychnine (Overman's synthesis) v)           |                               |         |
|        | Fredericamycin-vi) Juvabione                                              |                               |         |
|        | Unit II:Chemistry of Natural Products                                     | 5h                            |         |
|        | Structure, stereochemistry and biogenesis of Hardwickiic acid             |                               |         |
|        | Prostaglandin: Classification, general structure, biological              | 5h                            |         |
|        | importance, Structure elucidation & total                                 |                               |         |
|        | synthesis of PGE <sub>2</sub> , PGF <sub>1α</sub> , and podophllyotoxins. |                               |         |
|        | Unit IV: Vitamins                                                         | 12h                           |         |
|        | a)Classification, sources and biological importance of vitamin            |                               |         |
|        | B1, B2, B6, folic acid, B12, C,                                           |                               |         |
|        | D1, E (α-tocopherol), K1, K2, H (β- biotin).                              |                               |         |
|        | b) synthesis of the following:                                            |                               |         |
|        | Vitamin B1 including synthesis of pyrimidine and thiazole                 |                               |         |
| April  | moieties                                                                  |                               |         |
|        | Vitamin B2 from 3, 4-dimethylaniline and D(-)ribose                       |                               |         |
|        | Vitamin B6 from: Ethoxyacetylacetone and cyanoacetamide                   |                               |         |
|        | Vitamin E (α-tocopherol) from trimethylquinol and phytyl                  |                               |         |
|        | bromide                                                                   |                               |         |
|        | Vitamin K1 from 2-methyl-1, 4-naphthaquinone and phytol.                  |                               |         |
|        | Vitamin Folic acid from Guanidine and ethyl cyano acetate.                |                               |         |
|        | First Internal Test                                                       |                               |         |
|        | Seminar                                                                   |                               |         |

| May   | Unit V: Enzyme  a) Chemistry of enzymes: Introduction, nomenclature and classification of enzymes. Properties of enzymes: i) Enzyme efficiency/catalytic power; ii) Enzyme specificity: a) stereospecificity b) reaction specificity c) substract specificity, Mechanism of enzyme action: a) Fischer's                          | 10h |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|       | lock and key' b) Koshland induced fit hypothesis. Concept and identification of active site. Factors affecting enzyme kinetics: Substrate concentration, enzyme concentration, temperature, pH, product concentration etc. Reversible and irreversible inhibition Structure, stereochemistry and biogenesis of Hardwickiic acid. |     |  |
|       | b) Enzyme catalyzed organic reactions Hydrolysis, hydroxylation, oxidation and reduction                                                                                                                                                                                                                                         |     |  |
|       | Unit I:Terpenoids, Steroids and Alkaloids a) Biosynthesis of terpenoids Introduction to Terpenoids, Mevalonate pathway: Biosynthesis of mevalonic acid, Conversion of MVA into isopentyl pyrophosphate, Polymerisation of isopentyl pyrophosphate, Second Internal test                                                          | 6h  |  |
|       | Assingment                                                                                                                                                                                                                                                                                                                       |     |  |
|       | monoterpenes–geranyl cation and its derivatives, sesquiterpenes–farnesyl cation and its derivatives, diterpenoids, tri and tetra terpenoids                                                                                                                                                                                      | 10h |  |
|       | b) Structure and biological function of steroids:                                                                                                                                                                                                                                                                                |     |  |
| June  | Cholesterol, Bile acid, Oestrogen, Progesteron and Corticides (No synthesis).  c) Biosynthesis of Alkaloids: Introduction, phenylethylamine group, pyrolidine group, pipyridine group, pyrolidine-pyridine group, tropane group and                                                                                              |     |  |
|       | Indole group.                                                                                                                                                                                                                                                                                                                    |     |  |
| March |                                                                                                                                                                                                                                                                                                                                  |     |  |
|       |                                                                                                                                                                                                                                                                                                                                  |     |  |



# K.C.E.Society's **MOOLJI JAITHACOLLEGE, JALGAON**

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Manoj A. Pande

FACULTY: Science DEPARTMENT: Chemistry

CLASS: **FYBSc** SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH- 111: Inorganic Chemistry I

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                                                               | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |
| July      |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |
| August    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |
| September |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |
| October   | CH-111 General Introduction, Importance & Scope of Chemistry, Concept of Elements, atoms & Compounds, Atomic models, Discussion on different Atomic model: Dalton, Thomoson, Rutherford etc. Review of: Bohr's theory, Hydrogen Spectrum and limitations of Bohr's theory                                                                                                                                                                       | 05                            |             |
| November  | Review of: Bohr's theory, Hydrogen Spectrum and limitations of Bohr's theory, limitations of Bohr's theory cont. & Dual Nature of electron & derivation of de Broglie equationde Broglie, idea of de-Broglie matter waves, Derivation, Characteristics of matter waves, problems on de-Broglie equation, Problems on de-Broglie equation Cont.; Heisenberg's Uncertainty Principle: Statement, Phy. Concept, Phy. Concept & Numerical Problems, | 10                            |             |
| December  | Scrodinger equ, Phy.Significance of psi*; quantum numbers. Quantum Numbers with their significance cont. problems on QN, Shapes of orbitals, Rules for filling electrons in various orbitals Aufbau Princ.,Paulis Ex. Prinple                                                                                                                                                                                                                   | 08                            |             |
| January   | Writing electronic conf of elements cont.; Principle of Extra stability: Symmetrical Distribution & Exchange Energy, Anomalous elect. Conf. Writing ele. Conf of Ions. Revision & Summarization of Unit I First Assessment test 1( Practice Test)                                                                                                                                                                                               | 05                            |             |

| February | Unit-II Covalent Bonding: Def., Postulates of VBT, Formation of H2 molecule, Limitations. Unit-II Formation of H2 molecule on the basis of VBT, Limitations of VBT. CH-111 Limitations of VBT. Cont., Directional Characteristics of Covalent Bond, Overlap Criteria & Bond strength, Hybridization. CH-111 Hybridization cont.: sp,sp2, sp3,: examples, geometry. Factors determining shape of molecules. CH-111 sp3 hybridization, factors affecting shape of molecule, VSEPR theory: main pts & limitations,                                                                                                                                       | 06 |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| March    | Topic: CH-111 Inorg Chem. Problems on VSEPR, MOT: introduction, overview of VBT, main pts of MOT, LCAO. MO diagram of Homonuclear & Heteronuclear molecules. Ionic Bonding: General characteristics of ionic bonding. Energy consideration in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character. | 10 |  |



# K.C.E.Society's

#### MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

#### TEACHING PLAN

ACADEMIC YEAR: 2020-2021

NAME OF TEACHER: Dr Manoj A. Pande

FACULTY: Science DEPARTMENT: Chemistry CLASS: FY B.Sc. SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER:

#### **SECOND TERM**

| MONTH     | THEORY / PRACTICALS TO BE COVERED | NO.OF<br>LECTUR<br>ES<br>REQUIR<br>ED | REMAR<br>KS |
|-----------|-----------------------------------|---------------------------------------|-------------|
| July      |                                   |                                       |             |
| August    |                                   |                                       |             |
| September |                                   |                                       |             |
| October   |                                   |                                       |             |
| November  |                                   |                                       |             |

(Teacher) (H.O.D.)

Signature



# K.C.E.Society's MOOLJI JAITHACOLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Manoj A. Pande

FACULTY: Science DEPARTMENT: Chemistry CLASS: **TYBSc** SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH-504: Ind. Chemistry

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |             |
| July      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |             |
| August    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |             |
| September | Introduction to CH-504 Ind. Chemistry Introduction to Unit -1 of CH-504. Basic Requirement of Chemical Industry., Basic Requirement of Ind. Chem. Raw Materials and Unit Processes Unit Operation; Comparison between Unit operation & Unit Process video after lecture for better understanding of Unit operation & Processes shared You tube link.Quality Assurance; Quality Control and Process Control R & D Department, Pollution Control, Human Resource Dept. Safety Measures, Economics of Chem. React. & Classification of Reactions. Classification of reactions cont. & Batch - Continuous Process Yield calculation; Theoretical, Practical and %. Conversion, Selectivity and Yield Conversion and Selectivity of Chemical Reaction; Intellectual Property & Types of IP | 17                            |             |
| October   | Types of IP Rights; Copy right and Trademark, Types of IP Rights; Patent Act & Advantages of IP Patent; Advantages of IP rights. IP Rights in India. ISO & BIS. Comparison. Patent Agent Exam Information You tube video link shared. BIS syllabus & Pattern: You tube video link shared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                            |             |
|           | Patent Agent Exam Information You tube video link shared. BIS syllabus & Pattern. Overview and Revision of CH-504 Unit-I General Aspect of Ind. Chem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |

|          | CH-504 Ind. Chem. Unit-V Introduction, Ind. synthesis of Acetone: Principle, Reaction, process & application.                                                                                                                    | 12 |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|          | CH-504 Unit I Synthesis of acetone: process, Block dia. & application.; synthesis of methanol: Reaction                                                                                                                          |    |  |
|          | CH-504 Ind. synthesis of methanol: Reaction, Synthesis, Block dia. & application. Ind. synthesis of Isopropanol: Reaction                                                                                                        |    |  |
|          | CH-504 Ind. synthesis of Isopropanol: Reaction, Synthesis, Block dia. & application                                                                                                                                              |    |  |
| November | CH-504 Ind. synthesis of Acetylene: Reaction, Synthesis, Block dia. & application                                                                                                                                                |    |  |
|          | CH-504 Ind. synthesis of Toluene: Reaction, Synthesis, Block dia. & application                                                                                                                                                  |    |  |
|          | CH-504 application of Toluene cont. Ind. synthesis of Glycerol: Reaction, Synthesis, Block dia. & application                                                                                                                    |    |  |
|          | CH-504 cont. Ind. synthesis of Glycerol: Reaction, Synthesis, Block dia. & application                                                                                                                                           |    |  |
|          | CH-504 Unit-V Revision & Summarization                                                                                                                                                                                           |    |  |
|          | Ind.Chem. Unit-2 Sugar Introduction; Sugar Ind in Maharashtra & Ind Ind.Chem.Unit-2 Sugar Ind. Importance of Sugar Ind.; Manufacture of Cane SugarInd.Chem.Unit-2 Sugar Ind. Importance of Sugar Ind.; Manufacture of Cane Sugar | 08 |  |
| December | cane molassess Fermentatiom ind Coffey still Coffey still Wine beer                                                                                                                                                              |    |  |
|          | Topic: CH 504 U4 Petroleum Ind.:occuranc,producer,exploration method & composition. Petroleum: composition & refining                                                                                                            | 05 |  |
|          | Refining of petroleum, Cracking, catalytic reforming & hydrocracking, Knocking, Anti Knock compd.                                                                                                                                |    |  |
| January  | cracking cont.; knocking, antiknocking; octane no.                                                                                                                                                                               |    |  |
|          | Cetane no diff                                                                                                                                                                                                                   |    |  |
|          | Petrohol, Power alcohol: Manufacture, advantages & Disadvantages; manufacture of petrol: Bergius method.                                                                                                                         |    |  |
|          |                                                                                                                                                                                                                                  |    |  |



# K.C.E.Society's **MOOLJI JAITHA COLLEGE, JALGAON**

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

**TEACHING PLAN** 

**ACADEMIC YEAR: 2020- 2021** 

NAME OF TEACHER: Dr Manoj A. Pande

FACULTY: Science DEPARTMENT: Chemistry CLASS: FY B.Sc. SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH604 Ind. Chem.

#### **SECOND TERM**

| MONTH | THEORY / PRACTICALS TO BE COVERED       | NO.OF<br>LECTUR<br>ES<br>REQUIR<br>ED | REMAR<br>KS |
|-------|-----------------------------------------|---------------------------------------|-------------|
|       | Unit 5 Dyes, Drugs and Pharmaceuticals. | 12                                    |             |
| March |                                         |                                       |             |
|       | UNIT 4: Soap and Detergents             | 12                                    |             |
| April |                                         |                                       |             |
|       | UNIT 3: Pesticide Chemistry             | 20                                    |             |
| May   | UNIT 2: Chemistry of Perfumes           |                                       |             |
|       | UNIT 1: Chemistry of Cosmetics          | 12                                    |             |
| June  |                                         |                                       |             |

(Teacher) (H.O.D.)

Signature



# K.C.E.Society's MOOLJI JAITHACOLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### TEACHING PLAN

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Manoj A. Pande

FACULTY: Science DEPARTMENT: Chemistry

CLASS: TYBSc SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: **CH-503: Organic Chemistry** 

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                            | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
| July      |                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
| August    | Basic concepts of ORM. Unit IV, Aromatic Substitution reaction: Arenium ion mechanism, Mechanism of Nitration & FC Alkylation acylation, Mechanism of Sulphonation, Halogenation and Diazo coupling Reaction, IPSO Substitution, Effect of substituent group I; Activating & Deactivating group Nucleophilic Aromatic Substitution Reaction  Addition-Elimination Mechanism, Benzyne Int. Mechanism          | 15                            |             |
| September | Evidences for addition-elimination reaction & Benzyne Mechanism, Chichibabin Reaction Examples Overview and Revision of CH-503 Unit-IV. Introduction to CH-503 Unit I SN1 Reaction & SN2 Reaction, SNi Mechanism Scope of Nucleophilic Substitution Reaction at Allylic & Vinylic C NGP, Overview and Revision of CH-503 Unit -I Nucleophilic Subst. @ Sat C Revision & Summarization.                       | 15                            |             |
| October   | Introduction to CH-503 Unit II Electrophilic addition to C=C.  Types: Electrophilic addition and Nucleophilic addition; Mechanism of Electrophilic addition. AdE2 Mechanism.  Addtn of HX and Orientation of addtn  Markovnikov's Rule & Examples  Support for Carbocation formation in MR; Anti-Morkovnikov's Rule. and Terms Chemo/Regio/Stereo selectivity. Stereochemistry of Add HX to Alkene Mechanism | 12                            |             |

|          | Factors affecting Anti stereosect. Effect of Sust. on rate of Addition.                                                                            |     |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|          | Factors affecting Anti Stereoselectivity of                                                                                                        |     |  |
|          | Reaction Hydrogenation: Reaction, Mechanism & examples continue and Cis Hydroxylation Cis Hydroxylation Definition, reaction various reagents.     |     |  |
|          | Trans Hydroxylation Definition, reaction various reagents, mechanism & examples Ozonolysis                                                         |     |  |
|          | Mechanism of Ozonolysis, Precautions, Application & examples                                                                                       | 06  |  |
|          | Hydroboration-Oxidation Statement.                                                                                                                 |     |  |
| November | CH-503 Unit-II Revision & Summarization.                                                                                                           |     |  |
|          | Nucleophilic addition to c-o double bond introduction structure                                                                                    | 1.5 |  |
|          | reactivity. Cont.Factors affecting reactivity of carbonyl gp; Mechanism of addition of HCN.Addition of alcohol watwr                               | 15  |  |
|          | Shapes of orbitals Thiol am                                                                                                                        |     |  |
|          | Statement Reaction Mechanism application of aldol, perkin Cannizzaro reaction. wittig reaction                                                     |     |  |
| December | Reformatsky Reaction: statement, reaction, mechanism & applicat Reducing agents NaBH4 & LiAlH4 Synthesis, Reactions, mechanism, application, diff. |     |  |
|          | Topic: CH-503 U5 Ell.React: intro, exampls, mech.of 1,2eli., E2 elli: reaction, kinectics & Mech.                                                  |     |  |
|          | E2, E1 & E1CB reaction, mechanism, evidences & conditions                                                                                          |     |  |
|          | E2vs E1 ; Sust vs Eli.                                                                                                                             |     |  |
|          | Sn1 vs e1 breats rue                                                                                                                               | 10  |  |
| January  | :dehydrohalogenation,dehalogenation,dehydration;Hoffmann & Saytzeff eli Revision and Problem solving for Uni. Exam                                 |     |  |
|          | •                                                                                                                                                  |     |  |



# K.C.E.Society's MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

**TEACHING PLAN** 

ACADEMIC YEAR: 2020-2021

NAME OF TEACHER: Dr Manoj A. Pande

FACULTY: Science DEPARTMENT: Chemistry CLASS: FY B.Sc. SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: Organic Spectroscopy

**SECOND TERM** 

| MONTH    | THEORY / PRACTICALS TO BE COVERED                     | NO.OF<br>LECTUR<br>ES<br>REQUIR<br>ED | REMAR<br>KS |
|----------|-------------------------------------------------------|---------------------------------------|-------------|
| February | Unit I Introduction to spectroscopy                   | 15                                    |             |
| March    | Mass spectroscopy                                     | 5                                     |             |
| April    | Unit 2 UV spectroscopy                                | 12                                    |             |
| May      | UNIT 3. Infra-red Spectroscopy                        | 12                                    |             |
| June     | UNIT 4. NMR Spectroscopy                              | 12                                    |             |
| June     | UNIT 5. Combined Problems Based on UV, IR, NMR & Mass | 12                                    |             |



# K.C.E.Society's MOOLJI JAITHACOLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Rajendra D. Patil

FACULTY:Science DEPARTMENT: Chemistry

CLASS: **FYBSc** SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH- 112: Organic Chemistry I

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                            | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
| July      |                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
| August    |                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
| September |                                                                                                                                                                                                                                                                                                                                                                              |                               |             |
|           | Unit I. Fundamentals of Organic Chemistry                                                                                                                                                                                                                                                                                                                                    |                               |             |
| October   | Introduction, Inductive Effect and Resonance Effect.                                                                                                                                                                                                                                                                                                                         | 02                            |             |
|           | Unit I. Fundamentals of Organic Chemistry                                                                                                                                                                                                                                                                                                                                    | 06                            |             |
| November  | Cleavage of Bonds: Homolysis and Heterolysis.  Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.  Strength of organic acids and bases: Comparative study with emphasis on factors affecting pKvalues. Aromaticity: Benzenoids and Hückel's rule.  Revision of Unit I |                               |             |
| December  | Unit II.IUPAC Nomenclature of Organic Compounds  Rules for IUPAC nomenclature for: Saturated hydrocarbons, unsaturated hydrocarbons, organic compounds containing one functional group, organic compounds containing functional group and multiple bonds, organic compounds containing two or more than two functional groups.                                               | 08                            |             |
| January   | Unit II. IUPAC Nomenclature of Organic Compounds  Cyclic organic compounds, bicyclic organic compounds, Aromatic compounds.                                                                                                                                                                                                                                                  | 08                            |             |

|          | Revision of Unit II.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|          | Unit III. Aliphatic Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |
|          | <b>Alkanes:</b> (Upto 5 Carbons). Preparation: Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogenation.                                                                                                                                                                                                                                                                                     |    |  |
|          | <b>Alkenes:</b> (Upto 5 Carbons) Preparation: Elimination reactions: Dehydration of alcohols anddehydrohalogenation of alkyl halides (Saytzeff's rule): cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). Reactions: cis-addition (alk. KMnO <sub>4</sub> ) and trans-addition (bromine). Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation. |    |  |
| February | Alkynes: (Upto 5 Carbons) Preparation: Acetylene from CaC <sub>2</sub> and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides. Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO <sub>4</sub> , ozonolysis and oxidation with hot alkaline KMnO <sub>4</sub> .  Revision of Unit III.                                                                                          | 06 |  |



# K.C.E.Society's **MOOLJIJAITHACOLLEGE, JALGAON**

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

# **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Rajendra D. Patil

FACULTY:Science DEPARTMENT: Chemistry

CLASS: SYBSc SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH- 230: IT Skill for Chemist

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                   | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                     |                               |             |
| July      | Unit I. Introductory Writing Activities Introduction to word processor.                                                                                                                                                                                                                                                                             | 02                            |             |
| August    | Unit I. Introductory Writing Activities  Introduction to structure drawing (Chem Sketch/ Chem Draw) software.Incorporating chemical structures, chemical equations, and expressions from chemistry into wordProcessing documents.  Revision of Unit I.                                                                                              | 06                            |             |
| September | Unit II Handling Numeric Data  Spreadsheet software (Excel), creating a spreadsheet, entering andformatting information, basic functions and formulae, creating charts, tablesand graphs. Incorporating tables and graphs into word processingdocuments.                                                                                            | 08                            |             |
| October   | Unit II Handling Numeric Data  Simple calculations, plotting graphs using a spreadsheet (Planck's distribution law, radial distribution curves for hydrogenic orbitals, gas kinetic theory, and data from phase equilibria studies). Graphical solution.  Revision of Unit I.  Unit III Numeric Modelling Simulation of pH metric titration curves. | 06                            |             |

|          | Unit III Numeric Modeling                                                                                                                                                                                                                                                                                                        | 06 |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| November | Excel functions LINEST and LeastSquares. Numerical curve fitting, linear regression (rate constants fromconcentration time data, molar extinction coefficients from absorbance data), numerical differentiation (e.g. handling data from potentiometric andpH metric titrations, pKa of weak acid),  First Internal Examination. |    |  |
|          | Unit III Numeric Modelling                                                                                                                                                                                                                                                                                                       | 02 |  |
| December | Numerical integration (e.g. entropy/enthalpy change from heat capacity data). Revision of Unit III. Assignment.                                                                                                                                                                                                                  |    |  |



# K.C.E.Society's **MOOLJIJAITHACOLLEGE, JALGAON**

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

# **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Rajendra D. Patil

FACULTY:Science DEPARTMENT: Chemistry CLASS: **M.Sc. II** SUBJECT: M.Sc. II Organic Chemistry

PAPER CODE and TITLE OF PAPER: CHO-301: Organic Reaction Mechanism

#### **THIRD TERM**

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |             |
| July      | Unit I: Electronic Effect and Reactive intermediates  Effect of structure on reactivity: Inductive effect, Electromeric effect, Resonance, Hyperconjugation, and steric effects, Hammett equation and linear free energy relationship, Substituent and reaction constant, Taft equation.                                                                                                                                                                                                                                        | 05                            |             |
|           | Unit I: Electronic Effect and Reactive intermediates                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |             |
| August    | Thermodynamic and kinetic requirements for reactions, thermodynamically and kinetically controlled reactions, Hammonds postulate, transition states and intermediates, Kinetic & non kinetic methods of determining mechanisms, identification of products and determination of the presence of an intermediate, isotopic labeling, and kinetic isotope effects.  Reactive intermediates: Formation, structure, stability, and reactions of carbocations, carbanions, carbenes, nitrenes and free radicals. Revision of Unit I. | 10                            |             |
| September | Unit II: Aromatic Electrophilic Substitution and Elimination Reactions  Aromatic Electrophilic Substitution: The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The <i>o/p</i> ratio, <i>ipso</i> attack, orientation in benzene ring with more than one substituents, orientation in other ring system. Diazonium coupling, Gatterman-Koch reaction, Pechman reaction, Houben–Hoesch reaction.                                                                                                    | 15                            |             |
|           | Elimination Reactions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |             |

|          | The E1, E2 and E1CB mechanisms and orientation of the double bond, Saytzeff and Hoffman's rule, Effect of substrate structure, attacking base, leaving group and medium, Mechanism and orientation in pyrolytic elimination.                                                                                                                                                                           |    |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|          | Revision of Unit II.                                                                                                                                                                                                                                                                                                                                                                                   |    |  |
|          | Unit III: Carbanion                                                                                                                                                                                                                                                                                                                                                                                    |    |  |
| October  | a) Carbanion: Formation, stability and related name reactions. Aldol Condensation, BenzoinCondensation, Michael addition, Mannich reaction, Reimer-Tiemann reaction, Knoevengal reaction, Dieckmann reaction, Perkin reaction, Stobbe reaction, Halogenation of Ketone (Acid &Base catalysed), Darzen Condensation reaction and Claisen Ester condensation.                                            | 10 |  |
|          | Unit III: Carbanion                                                                                                                                                                                                                                                                                                                                                                                    | 12 |  |
|          | <b>b) Enamines:</b> Formation and Applications. Revision of Unit III.                                                                                                                                                                                                                                                                                                                                  |    |  |
|          | Unit IV: Umpolung                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| November | Umpolung Reactivity: Dipole inversion, generation of acyl anion, use of 1,3-dithiane, methylthiomethylsulphoxide, bis-Phenylthiomethane, Metallatedenol ethers, alkylidenedithiane, Ketone dithioacetals, and 2-propenethiobismethyl thioallyl anion.                                                                                                                                                  |    |  |
|          | b) <b>Phosphorous, Nitrogen and Sulphur ylid</b> Preparation, Reactions, Applications and Stereochemistry.                                                                                                                                                                                                                                                                                             |    |  |
|          | First Internal Examination                                                                                                                                                                                                                                                                                                                                                                             |    |  |
|          | c) Organoboranes                                                                                                                                                                                                                                                                                                                                                                                       | 08 |  |
| December | Preparation and properties of organoborane reagents (RBH2, R2BH, R3B, 9-BBN, catecholborane, Thexylborane, cyclohexylborane.Hydroboration mechanism, stereo andregioselectivity.Uses of hydroboration in synthesis of primary, secondary, tertiary alcohols, aldehydes, and ketones.Synthesis of <i>EE</i> , <i>EZ</i> , <i>and ZZ</i> dienes and alkynes.Allylboranes- synthesis, mechanism and uses. |    |  |
|          | d) Organo silicon and Tin Me <sub>3</sub> SiCl, Peterson Olefination and Me <sub>3</sub> SiH, TBTH and AIBN. Revision of Unit IV. Assignment                                                                                                                                                                                                                                                           |    |  |

(Teacher) (Director and Head)



# K.C.E.Society's **MOOLJIJAITHACOLLEGE, JALGAON**

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### TEACHING PLAN

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Rajendra D. Patil

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc. II SUBJECT: M.Sc. II Organic Chemistry

PAPER CODE and TITLE OF PAPER: CHO-306: Photochemistry, Free radical and

Pericyclic reactions

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO.OF<br>LECTURES<br>REQUIRED | REMARK<br>S |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| June      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |             |
| July      | Unit I: Photochemistry  Introduction and basic principles, photochemical excitation of the molecule, electronic transitions, spin multiplicity, Jablonski diagram.                                                                                                                                                                                                                                                                                                          | 04                            |             |
| August    | Unit I: Photochemistry  Laws of photochemistry-GrothursDrapper Law and Einstein's Law of Photochemical Equivalence. Quantum yield, Photosentization and quenching process. Revision of Unit I.  Unit II: Photochemistry of Organic Compound  a) Carbonyl compounds  Norrish Type I, α-cleavage: Acyclic saturated ketones, saturated cyclic ketones. β-cleavage reaction, hydrogen abstraction, Norrish Type II, and Intermolecular photo reduction.                        | 10                            |             |
| September | Unit II: Photochemistry of Organic Compound  a) Carbonyl compounds Paterno-Buchireaction and reaction of enone with alkenes. b) Photo Rearrangements Cyclohexanone rearrangements, Di-π-methane (DPM) rearrangemet, and Aza-Di-π-methanerearrangement c) Photochemistry of alkenes Cis-trans isomerization, dimerization, photochemistry of conjugated diene in solution d) Photochemistry of Aromatic compounds Isomerization, addition of alkenes to benzenoid compounds, | 11                            |             |

|          | addition of oxygen and aromatic photo substitution. e) <b>Photofries rearrangement and Barton reaction</b> . Revision of Unit II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| October  | Unit III: Free Radicals  Formation, stability, types of free radical reactions, free radical substitution, cyclizationmechanism, mechanism at an aromatic substrate, neighbouring group assistance and effect ofsolvent on reactivity.NBS allylic bromination, aldehyde oxidation, autooxidaton, alkynes coupling, arylation of aromatic compounds by diazonium salts.                                                                                                                                                                                                                                                                                                            | 12 |  |
|          | Unit III: Free Radicals Sand-Meyer reaction and Hunds-Diecker reaction. Revision of Unit II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 |  |
| November | <ul> <li>a) Introduction, construction of π MO orbitals of ethylene and 1,3-butadiene, symmetry in π MOorbitals, Frontier Moleculer Orbitals (FMO), PMO, and Excited states.</li> <li>b) Electrocyclic reactions: Introduction, con-rotatory and disrotatory motions in ring opening and ring closing reactions (4n and 4n+2 π system), FMO method for ring opening and closing of 4n and 4n+2 π system.</li> <li>Revision of Unit III. First Internal Examination</li> </ul>                                                                                                                                                                                                     |    |  |
| December | <ul> <li>Unit V: Pericyclic Reactions-II</li> <li>a) Cycloaddition reactions Introduction, [2+2] cycloaddition (FMO method and stereochemistry), [2+4] cycloaddition(FMO method and stereochemistry), Diels-Alder reaction, retrocycloaddition, Chelotropicreactions and 1,3-dipolar cycloaddition.</li> <li>b) Sigma tropic rearrangements Introduction, classification and nomenclature, Mechanism and FMO, Sigmatropic shifts of alkylgroup, Cope rearrangement, Claisen rearrangements, fluxional molecules and ENE reaction.</li> <li>c) Applications of Pericyclic Reactions Synthesis of Vitamin-D and Endiandric acid.</li> <li>Revision of Unit IV.Assignment</li> </ul> | 12 |  |
|          | Revision of Unit IV. Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |

(Teacher) (Director and Head)
Signature Signature

# K.C.E.Society's



### MOOLJIJAITHACOLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Rajendra D. Patil

FACULTY:Science DEPARTMENT: Chemistry

CLASS: F. Y. B.Sc. SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH-122 and Organic Chemistry

#### **Second TERM**

| Month | Торіс                                                                                                                                                              | Lectures<br>Allotted | Remarks |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|
| May   | -                                                                                                                                                                  |                      |         |
|       | Unit 1. Aromatic hydrocarbons Preparation of benzene from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid.                                 | 06                   |         |
|       | <b>Reactions of benzene</b> : Nitration, halogenation and sulphonation. Friedel-Craft's reaction alkylation and acylation. Side chain oxidation of alkyl benzenes. |                      |         |
|       | Revision of Unit 1.                                                                                                                                                |                      |         |
|       | Unit 2. Alkyl and Aryl Halides                                                                                                                                     | 04                   |         |
|       | a) Alkyl Halides:                                                                                                                                                  |                      |         |
|       | $S_N^{-1}$ , $S_N^{-2}$ and $S_N^{-1}$ reactions.                                                                                                                  |                      |         |
|       | Preparation of alkyl halide from alkenes and                                                                                                                       |                      |         |

|      | alcohols.                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|      | <b>Reactions of alkyl halide</b> : hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis. Elimination vs substitution.                                                                                                                                                                                                                                        |    |  |
| June | Unit 2. Alkyl and Aryl Halides                                                                                                                                                                                                                                                                                                                                                                              | 04 |  |
|      | <ul> <li>b) Aryl Halides: Preparation of Chloro, bromo and iodo-benzene from phenol, Sandmeyer reactions.</li> <li>Reactions of Chlorobenzene: Aromatic nucleophilic substitution- replacement by -OH group. Effect of substituent on nucleophilic substitution. Benzyne Mechanism.</li> </ul>                                                                                                              |    |  |
|      | Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.                                                                                                                                                                                                                                                                                                         |    |  |
|      | Revision of Unit 2.                                                                                                                                                                                                                                                                                                                                                                                         |    |  |
|      | Unit 3. Alcohols, Phenols and Ethers                                                                                                                                                                                                                                                                                                                                                                        |    |  |
|      | a) Alcohols: Preparation of 1°, 2° and 3° alcohols using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.  Reactions of alcohols: With sodium, HX (Lucas test), esterification, oxidation with PCC, alk. KMnO <sub>4</sub> , acidic dichromate, conc. HNO <sub>3</sub> . Oppeneauer oxidation, Diols: oxidation of diols. Pinacol-Pinacolone rearrangement. | 06 |  |
| July | b) Phenols: Preparation of phenol: Cumene hydroperoxide method, from diazonium salts. Reactions of phenol: Nitration, halogenation and sulphonation, Reimer-Tiemann Reaction, Gattermann-Koch Reaction, Houben-Hoesch Condensation, Schotten Baumann Reaction.                                                                                                                                              | 04 |  |
|      | c) Ethers :Cleavage of ethers with HI.                                                                                                                                                                                                                                                                                                                                                                      |    |  |

| Revision of Chapter-3                                                                                                                                                                                                                                                                                                       |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Chapter-4 Aldehydes and ketones  Preparation of formaldehyde, acetaldehyde, acetone and benzaldehyde from acid chlorides and from nitriles.                                                                                                                                                                                 |    |  |
| Reactions of aldehyde and ketones – Reaction with HCN, ROH, NaHSO <sub>3</sub> , NH <sub>2</sub> -G derivatives. Iodoform test, Aldol Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation, Clemmensen reduction, Wolff Kishner reduction, Meerwein-Pondorff Verley reduction.  Revision of Chapter-4 | 06 |  |
| Exams                                                                                                                                                                                                                                                                                                                       |    |  |

| Signature:    | Signature:       |
|---------------|------------------|
| Director/Head | Name of Teacher: |



# K.C.E.Society's MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle) UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

# **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. R. D. Patil

FACULTY: Science DEPARTMENT: Chemistry

CLASS: S.Y. B.Sc SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH- 240: Basic Analytical Chemistry

FOURTH TERM

| MONTH | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                            | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|
|       | Unit-1: Introduction to Analytical Chemistry                                                                                                                                                                                                                                                                                                 |                               |         |
|       | Introduction to Analytical Chemistry and its interdisciplinary                                                                                                                                                                                                                                                                               |                               |         |
| March | nature. Concept of sampling. Importance of accuracy, precision                                                                                                                                                                                                                                                                               |                               |         |
|       | and sources of error in analytical measurements. Presentation of                                                                                                                                                                                                                                                                             |                               |         |
|       | experimental data and results, from the point of view of                                                                                                                                                                                                                                                                                     |                               |         |
|       | significant figures.                                                                                                                                                                                                                                                                                                                         |                               |         |
| April | Unit II: Chromatography Definition, general introduction on principles of chromatography, paper chromatography, TLC etc. a. Paper chromatographic separation of mixture of metal ion (Fe3+ and Al3+). b. To compare paint/dyes/organic samples by TLC method.                                                                                |                               |         |
| May   | Unit III: Analysis of Water Sample and Food Products  A] Analysis of water sample Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods.  a. Determination of pH, acidity and alkalinity of a water sample.  b. Determination of dissolved oxygen (DO) of a water sample |                               |         |
| June  | B] Analysis of Food Products Nutritional value of foods, idea about food processing, food preservations and adulteration.  a. Identification of adulterants in some common food items like salt, coffee powder, chilli powder, turmeric powder and pulses, etc.  b. Analysis of preservatives and colouring matter.                          | 5h                            |         |

(Teacher) (H.O.D.)

Signature

# IP3

# K.C.E.Society's

### MOOLJIJAITHACOLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

### **TEACHING PLAN**

ACADEMICYEAR: 2020-21

NAME OF TEACHER: Dr. Rajendra D. Patil

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc II SUBJECT: Organic Chemistry

PAPER CODE and TITLE OF PAPER: CHO-402: Advanced synthetic organic chemistry

#### **Fourth TERM**

| Month | Topic                                                                                                                                                                                                                                                                                                      | Lectures<br>Allotted | Review<br>(Complete/<br>Incomplete) | Action plan if incomplete |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|---------------------------|
| March | Unit I: Metal mediated organic synthesis  Transition metal complexes in organic synthesis Cu, Pd, Ni, Co, Fe (Metal mediated C-C and C-X bond formation reactions: Suzuki, Heck, Sonogashira, Stille, Fukuyama, Kumada, Hiyama, Negishi, Buchwald-Hartwig, Noyori, Reppe, Oxo process and Ullman coupling. | 10                   |                                     |                           |

| April | Unit I: Metal mediated organic synthesis                                                                                                                                                                                                | 05 |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|       | Metathesis: Grubbs 1 <sup>st</sup> and 2 <sup>nd</sup> generation catalyst, Olefin cross coupling (OCM), ring closing (RCM) and ring opening (ROM) metathesis, applications.                                                            |    |  |
|       | Revision of Unit 1.                                                                                                                                                                                                                     |    |  |
|       | Unit II: Olefin formation reactions Wittig, Horner-Wordworth- Emmons, Shapiro, Bamford- Stevens, McMurry, Julia- Lythgoe and Peterson olefination reactions, Titanium- carbene mediated olefination: Tebbe, Petasis and Nysted reagent. | 08 |  |
|       | Revision of Unit 2.                                                                                                                                                                                                                     |    |  |
|       | Unit III: Ring formation reactions Pausan-Khand, Bergman and Nazerov Cyclization.                                                                                                                                                       | 03 |  |
| May   | Unit III: Ring formation reactions                                                                                                                                                                                                      | 04 |  |
|       | Re Click chemistry: criterion for click reaction, Sharpless azides cycloadditions.                                                                                                                                                      |    |  |
|       | Other important reactions: Baylis Hilman, Eschenmoser- Tanabe fragmentation, Mitsunobu reaction.                                                                                                                                        |    |  |
|       | Revision of Unit-3.                                                                                                                                                                                                                     |    |  |
|       | Unit IV: Use of Boron and Silicon in organic synthesis                                                                                                                                                                                  | 06 |  |

|      | Revision of Unit-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|      | Unit V:Designing of organic synthesis  a) Protection and de-protection of hydroxyl, amino, carboxyl, ketone and aldehyde functions as illustrated in the synthesis of polypeptide and polynucleotide,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06 |  |
|      | Umpolung in organic synthesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |
| June | Unit V:Designing of organic synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18 |  |
|      | b) Retrosynthesis An introduction to synthons and synthetic equivalents, functional group inter conversions.  One group Disconnections: Disconnections of simple alcohols, simple olefins, Aryl ketones, control, Disconnections of simple ketones & acids.  Two group Disconnections: 1,3-Dioxygenated skeletons, β-hydroxy carbonyl compounds, α-β unsaturated carbonyl compounds, 1,3-dicarbonyl compounds—Use of Mannich reaction  Two group Disconnections: The 1,2-Dioxygenation pattern—α-hydroxy carbonyl compounds, 1,2 diols, Illogical electrophiles ,1,4-Dioxygenation pattern—1,4 dicarbonyl compounds, other illogical synthons, 1,6 dicarbonyl compounds, 2,6 dicarbonyl com |    |  |

| Exams                |               |        |             |  |
|----------------------|---------------|--------|-------------|--|
|                      |               |        |             |  |
| Signature :          |               |        | Signature:  |  |
| ~1 <b>81141414 1</b> |               |        | ~1811WW101  |  |
|                      |               |        |             |  |
|                      | Director/Head | Name o | of Teacher: |  |
|                      |               |        |             |  |



## Khandesh College Education Society's

Moolji Jaitha College, Jalgaon An "Autonomous College" Affiliated to Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

## **School of Chemical Sciences**

#### **TEACHING PLAN**

| Name of Teacher: | Dr. R. R. Mahire           | Class:   | T. Y. B. Sc. (Chemistry) |
|------------------|----------------------------|----------|--------------------------|
| Subject/Paper :  | CH-502 Inorganic Chemistry | Faculty: | Science                  |
|                  | (Sem-V) (2020-21)          |          |                          |

| Month     | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lectures<br>Allotted | Review<br>(Complete/<br>Incomplete) | Action plan if incomplete |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|---------------------------|
| August    | UNIT-1: Structure and Reactivity of Molecules Valence Shell Electron Pair Repulsion Theory (VSEPR), Shapes of simple molecules and ions containing lone-and bondpairs of electrons multiple bonding, prediction of shapes of irregular molecules and ions like - Sulphur tetra fluoride, Bromine trifluoride, Dichloroiodate (I) anion, Penta fluoro telluurate (IV) anion, Tetrachloroiodate (III) anion, Nitrogen dioxide, Phosphorus trihalides, Carbonyl fluoride, Summary of VSEPR rules Drawbacks of VSEPR theory. | 09                   |                                     |                           |
| September | UNIT 2: Modern Theories of Coordination Compound Part –A: Assumptions, Werner theory and isomerism, EAN, Stability of complex ion, Factors affecting stability of complex ion, Irving William series, Stabilization of unstable oxidation state, Stereochemistry of coordination compound with C.N. 4 and 6, Isomerism in coordination compounds                                                                                                                                                                         | 99                   |                                     |                           |
| October   | UNIT 3: Modern Theories of<br>Coordination Compound Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09                   |                                     |                           |

| _        | <u>,                                      </u>        |    | T | T |
|----------|-------------------------------------------------------|----|---|---|
|          | -В:                                                   |    |   |   |
|          | Assumptions of V.B.T., V.B.                           |    |   |   |
|          | Theory as applied to structural                       |    |   |   |
|          | and bonding in complexes of 3d                        |    |   |   |
|          | series elements. Examples of                          |    |   |   |
|          | square planar, Tetrahedral and                        |    |   |   |
|          | Octahedral complexes, inner                           |    |   |   |
|          | and                                                   |    |   |   |
|          | outer orbital complexes,                              |    |   |   |
|          | Magnetic properties of                                |    |   |   |
|          | complexes of 3d series                                |    |   |   |
|          | elements, limitations of                              |    |   |   |
|          | V.B.T., Assumptions of CFT,                           |    |   |   |
|          | Degeneracy of 'd' orbital's,                          |    |   |   |
|          | Application of CFT to                                 |    |   |   |
|          | octahedral                                            |    |   |   |
|          | complexes, Weak and strong                            |    |   |   |
|          | ligand field splitting,                               |    |   |   |
|          | spectrochemical series.                               |    |   |   |
|          |                                                       |    |   |   |
| November | UNIT 4: Modern Theories of                            | 09 |   |   |
|          | <b>Coordination Compound Part</b>                     |    |   |   |
|          | -C:                                                   |    |   |   |
|          | Definition of C.F.S.E.,                               |    |   |   |
|          | Calculation of C.F.S.E. in weak                       |    |   |   |
|          | and strong field octahedral                           |    |   |   |
|          | complexes, Evidences of                               |    |   |   |
|          | C.F.S.E., Factor's affecting 10                       |    |   |   |
|          | Dq, CFT and magnetic                                  |    |   |   |
|          | properties, spin only magnetic                        |    |   |   |
|          | moment equation, Electron                             |    |   |   |
|          | occupancy in CFT, Application                         |    |   |   |
|          | of CFT to tetrahedral a nd Calculation of C.F.S.E. in |    |   |   |
|          |                                                       |    |   |   |
|          | tetrahedral complexes. Tetragonal                     |    |   |   |
|          | distortions from octahedral                           |    |   |   |
|          | geometry, Jahn-Teller theorem                         |    |   |   |
|          | Application of CFT to square                          |    |   |   |
|          | planer complexes, Problems                            |    |   |   |
|          | related to calculation of spin                        |    |   |   |
|          | only magnetic moment for                              |    |   |   |
|          | square planer, tetrahedral and                        |    |   |   |
|          | octahedral complexes (for high                        |    |   |   |
|          | spin and low spin                                     |    |   |   |
|          | complexes)                                            |    |   |   |
| December | <b>UNIT 5: Modern Theories of</b>                     | 09 |   |   |
|          | <b>Coordination Compound Part</b>                     |    |   |   |
|          | -D:                                                   |    |   |   |
|          | Crystal field effects- Variation                      |    |   |   |
|          | of lattice energies, enthalpies of                    |    |   |   |
|          | hydration and crystal radii                           |    |   |   |
|          | variations in halides of first and                    |    |   |   |
|          | second row transition metal                           |    |   |   |
|          | series and spinel structures,                         |    |   |   |

| limitations of         | CFT,        |
|------------------------|-------------|
| experimental eviden    | nces in     |
| support of metal liga  | and bond    |
| overlaps. ACFT, Ass    | umptions 09 |
| of Molecular orbital   | theory,     |
| composition of ligan   | nd group    |
| orbitals, Molecular    |             |
| orbital treatment (Qu  | nalitative) |
| of octahedral complexe | es (strong  |
| & weak field), Et      | ffect of    |
| pibonding, Charge      | transfer    |
| spectra, Comparison    | of VBT,     |
| CFT and MOT.           |             |

Director/Head Name of Teacher: Dr. R. R. Mahire



# Khandesh College Education Society's Moolii Jaitha College, Jalgaon

Moolji Jaitha College, Jalgaon
An "Autonomous College" Affiliated to
Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

### **School of Chemical Sciences**

#### **TEACHING PLAN**

Name of Teacher: Dr. R. R. Mahire Class: T. Y. B. Sc. (Chemistry)

Subject/Paper : CH-602 Chemistry of Inorganic Solids Faculty: Science

(Sem-VI) (2020-21)

| Month | Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lectures<br>Allotted | Review (Complete/Incomplete) | Action plan if incomplete |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|---------------------------|
| March | UNIT 1: Synthetic Methods of Nanomaterials Introduction to Nano science, nanostructure and nanotechnology (basic idea), Size dependent properties of nanomaterials (basic idea) a) Semiconducting nanoparticles b) Metallic nanoparticles. Synthesis routes of nanomaterials: a) Bottom up approaches i) Chemical vapor deposition (CVD) ii) Spray pyrolysis iii) Sol gel process b) Top down approaches: mechanical alloying, Role of surfactant in shape and size control of nanomaterials UNIT 2: Inorganic Solids of Technological Importance Inorganic pigments, Coloured solids, White and black pigments, Molecular materials and fullerides, Molecular material chemistry – One dimensional metals, Molecular magnets | 06                   |                              |                           |
| April | UNIT 2: Inorganic Solids of Technological Importance , Inorganic liquid crystals, Solid electrolytes (a) solid cationic electrolytes (b) solid anionic Electrolytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03                   |                              |                           |

|     | UNIT 3: Cement and Lime Classification of cement, Ingredients and their role, Manufacture of cement and the setting process. Quick setting cements. Manufacture of lime and applications.                                                                                     | 09 |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|     | UNIT 4: Fertilizers  Plant Nutrients, Different types of fertilizers, need for fertilizers, requisite qualities of fertilizers, symptom of deficiency,                                                                                                                        | 04 |  |
| May | UNIT 4: Fertilizers  Manufacture of following fertilizers:- Urea, Ammonium nitrate, Calcium ammonium nitrate, Ammonium phosphate, Super phosphates, Compound and Mixed fertilizers, Potassium chloride and Potassium sulphate.                                                | 05 |  |
|     | UNIT 5: Alloys Classification of alloys, Ferrous and Non-ferrous alloys, Specific properties of elements in alloys, Manufacture of steel, Removal of silicon, decarburization, demagnetization and desulphurization. Composition and properties of different types of steels. | 09 |  |

Director/Head Name of Teacher: Dr. R. R. Mahire



# Khandesh College Education Society's Moolii Jaitha College Jalgaor

Moolji Jaitha College, Jalgaon An "Autonomous College" Affiliated to Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

## **School of Chemical Sciences**

#### **TEACHING PLAN**

| Name of Teacher: | Dr. R. R. Mahire                  | Class:          | M. ScII (Analytical Chemistry) |
|------------------|-----------------------------------|-----------------|--------------------------------|
| Subject/Paper :  | CHA-302 Modern separation science | <b>Faculty:</b> | Science                        |
|                  | (Sem-III) (2020-21)               |                 |                                |

| Month     | Торіс                                                                                                                                                                                                                                                                                                                                                                                       | Lectures<br>Allotted | Review<br>(Complete/<br>Incomplete) | Action plan if incomplete |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|---------------------------|
| August    | Unit I: Chromatography: General Principles  Definition and types of chromatography, Theoretical Principles underlying Chromatographic techniques, Theories of Chromatography: (a) Plate Theory, (b) Rate Theory, Behavior of solutes, Column efficiency and band broadening, Resolution, Column process, Reduced variable, Time of analysis, Qualitative & quantitative analysis, Problems. | 10                   | •                                   |                           |
| September | Unit II: Gas Chromatography Optimization of experimental condition, Retention time and Retention volume, Detectors: Thermionic, Flame photometric, Helium and Coulson conductivity detectors, Qualitative and Quantitative analysis, Problems.                                                                                                                                              | 10                   |                                     |                           |
| October   | Unit III: High Performance Liquid Chromatography Introduction, GC and HPLC, Instrumentation, Refractive index detector, luminescence detector, ultraviolet detector and electrochemical detector, Quantitative analysis and data display,                                                                                                                                                   | 10                   |                                     |                           |

| November | Unit III: High Performance Liquid Chromatography Derivatisation technique in HPLC, Chiral columns, C8 and C18 columns, Applications. Unit IV: Ion exchange chromatography Definition, Principle, Cation Exchangers, Anion Exchangers, Regeneration, Ion Exchange Column Used in Chromatographic Seperations, | 05<br>05 |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| December | Unit IV: Ion exchange chromatography Selection of suitable systems, Ion exchange capacity, Ion Exchange Techniques, Applications of Ion exchangers.                                                                                                                                                          | 05       |  |
|          | Unit V: Solvent Extraction and Membrane-Based Methods Distribution coefficient, distribution ratio, percent extracted, solvent extraction of metals, accelerated and                                                                                                                                         | 05       |  |
| January  | Unit V: Solvent Extraction and Membrane-Based Methods microwave assisted extraction, solid phase extraction and solid phase microextraction, problems.  Reverse Osmosis- Working of techniques and Applications Electrodialysis - Membrane working of techniques and Applications membranes                  | 10       |  |
|          | phase microextraction, problems.  Reverse Osmosis- Working of techniques and Applications Electrodialysis - Membrane                                                                                                                                                                                         |          |  |

Director/Head Name of Teacher: Dr. R. R. Mahire



## Khandesh College Education Society's

Moolji Jaitha College, Jalgaon An "Autonomous College" Affiliated to Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

## **School of Chemical Sciences**

#### **TEACHING PLAN**

| Name of Teacher: | Dr. R. R. Mahire                    | Class:          | M. ScII (Analytical Chemistry) |
|------------------|-------------------------------------|-----------------|--------------------------------|
| Subject/Paper :  | CHA-305B Bio-analysis & analysis of | <b>Faculty:</b> | Science                        |
|                  | food (Sem-III) (2020-21)            |                 |                                |

| Month     | Торіс                                                                                                                                                                                                                        | Lectures<br>Allotted | Review<br>(Complete/<br>Incomplete) | Action plan if incomplete |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|---------------------------|
| August    | Unit I: Human Nutrition, Biological Value of Food Human nutrition, Biological value of food, Estimation of carbohydrates, Fats, Proteins, Amino Acids.                                                                       | 10                   |                                     |                           |
| September | Unit II: Food Analysis Analysis of food: Milk, Cereals, Flour, Spices, Flavors' and Condiments, Honey, jam and jelly, Non-alcoholic beverages (Tea and Coffee).                                                              | 10                   |                                     |                           |
| October   | Unit III: Determination of food preservatives Fluorides, Oxidizing agent-Peroxide, Organic Preservative, Formaldehyde, Formic acid, Ether extractive preservative, Separation of organic preservative and sweetening agents, | 10                   |                                     |                           |
| November  | Unit III: Determination of food preservatives Volatile fatty acid in bakery product, 2 Aminopyridine in orange.                                                                                                              | 05                   |                                     |                           |
|           | Unit IV: Collection of Specimens and Analysis of Blood and urine Blood: Collection of Blood specimens, storage and preservation, Urine: Collection                                                                           | 05                   |                                     |                           |

| December | of Urine, physical characteristics of urea, preservation and storage.  Unit IV: Collection of Specimens and Analysis of | 10 |  |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|--|
|          | Blood and urine Determination of blood and                                                                              |    |  |
|          | plasma glucose by glucose oxidase method, Determination of urine for glucose,                                           |    |  |
|          | Determination of ketone bodies<br>in blood, Oral Glucose<br>tolerance test. Determination<br>of blood hemoglobin,       |    |  |
|          | determination of urea in urine<br>by urease method and by direct<br>colorimetry, Estimation of Na,                      |    |  |
|          | K, Ca by flame photometry, inorganic phosphate by colorimetry.                                                          |    |  |
| January  | Unit V: Forensic Analysis                                                                                               | 10 |  |
| J J      | Introduction, Forensic                                                                                                  | -  |  |
|          | examination of biological                                                                                               |    |  |
|          | fluids, stains semen, hair and other materials.                                                                         |    |  |
|          | Forensic Toxicology: Isolation,                                                                                         |    |  |
|          | identification and determination                                                                                        |    |  |
|          | of following 1) Narcoticsheroin                                                                                         |    |  |
|          | and cocaine. 2) Stimulants-                                                                                             |    |  |
|          | caffeine, amphetamines. 3) Depressants- Barbiturates,                                                                   |    |  |
|          | Benzodiazepines.                                                                                                        |    |  |

Director/Head Name of Teacher: Dr. R. R. Mahire



## Khandesh College Education Society's

Moolji Jaitha College, Jalgaon
An "Autonomous College" Affiliated to
Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

### **School of Chemical Sciences**

#### **TEACHING PLAN**

Name of Teacher: Dr. R. R. Mahire Class: M. Sc.-II (Analytical Chemistry)

Subject/Paper : CHA-406 Applications of nanotechnology Faculty: Science

(Sem-IV) (2020-21)

| Month | Topic                                  | <b>Lectures Allotted</b> | Review<br>(Complete/<br>Incomplete) | Action plan if incomplete |
|-------|----------------------------------------|--------------------------|-------------------------------------|---------------------------|
| March | <b>Unit I: Nano- The expanding</b>     | 10                       |                                     |                           |
|       | Horizon                                |                          |                                     |                           |
|       | Introduction, Fundamentals of          |                          |                                     |                           |
|       | nano, Nanoscale phenomena,             |                          |                                     |                           |
|       | Significance of nanomaterials          |                          |                                     |                           |
|       | and its impact, Classification of      |                          |                                     |                           |
|       | nanomaterials, need for it,            |                          |                                     |                           |
|       | issues and other perspectives,         |                          |                                     |                           |
|       | Prospective                            |                          |                                     |                           |
|       | applications.  Unit II: Fabrication of | 05                       |                                     |                           |
|       | Nanomaterials                          | 03                       |                                     |                           |
|       | Top-down and Bottom-up                 |                          |                                     |                           |
|       | approaches, Gas phase                  |                          |                                     |                           |
|       | synthesis.                             |                          |                                     |                           |
| April | Unit II: Fabrication of                | 05                       |                                     |                           |
| 1     | Nanomaterials                          |                          |                                     |                           |
|       | Liquid phase synthesis, Solid          |                          |                                     |                           |
|       | phase synthesis, Lithography.          |                          |                                     |                           |
|       | <b>Unit III: Nanomaterial</b>          |                          |                                     |                           |
|       | <b>Evaluation:</b>                     |                          |                                     |                           |
|       | Need for material studies,             | 1.0                      |                                     |                           |
|       | Structural property studies,           | 10                       |                                     |                           |
|       | Morphological analysis, Optical        |                          |                                     |                           |
|       | property studies.                      |                          |                                     |                           |

| May  | Unit III: Nanomaterial               | 05 |   |
|------|--------------------------------------|----|---|
| _    | <b>Evaluation:</b>                   |    |   |
|      | Electrical property studies,         |    |   |
|      | Magnetic property studies,           |    |   |
|      | Mechanical property studies.         |    |   |
|      | Unit IV: Nanomaterials for           | 10 |   |
|      | <b>Environmental Remediation</b>     |    |   |
|      | Environmental remediation by         |    |   |
|      | chemical degradation/ Removal        |    |   |
|      | of contaminants, Nanomaterials       |    |   |
|      | as sorbents, Nanofiltration- for     |    |   |
|      | clean water, Dendrimers- the         |    |   |
|      | nanoreactors for remediation,        |    |   |
|      | carbon nanomaterials- Versatile      |    |   |
|      | new Adsorbents, Nanoscale            |    |   |
|      | biopolymers, Future prospects.       |    |   |
| June | <b>Unit V: Societal Implications</b> | 15 |   |
|      | of Nanotechnology                    |    |   |
|      | Societal implications,               |    |   |
|      | Physicochemical properties of        |    |   |
|      | Nanomaterials, Health hazards,       |    |   |
|      | Nanotoxicology, Significance         |    |   |
|      | of toxicity studies, Current         |    |   |
|      | perspectives.                        |    |   |
|      | I .                                  |    | I |

Director/Head Name of Teacher: Dr. R. R. Mahire



"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

#### TEACHING PLAN

ACADEMICYEAR: 2021-2022

NAME OF TEACHER: Sonal B Uplapwar

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc.II (Analytical Chemistry) SUBJECT: Analytical Chemistry

PAPER CODE and TITLE OF PAPER: CHA-301: Concepts of analytical chemistry

#### FIRST TERM

|           |                                                                                  | NO.OF                |         |
|-----------|----------------------------------------------------------------------------------|----------------------|---------|
| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                | LECTURES<br>REQUIRED | REMARKS |
| August    | Unit I: Analytical Science: A perspective<br>&<br>Unit II                        | 12                   |         |
| September | Unit II: Statistical analysis and validation                                     | 12                   |         |
| October   | Unit III: Good laboratory practice: Quality assurance of analytical measurements | 12                   |         |
| November  | Unit IV: Introduction to intellectual property rights                            | 12                   |         |
| December  | Unit V: Introduction to patent                                                   | 12                   |         |

(Teacher) (H.O.D.)



"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: <a href="mjcollege@kces.in">mjcollege@kces.in</a>

#### **TEACHING PLAN**

ACADEMICYEAR: 2021-2022

NAME OF TEACHER: Sonal B Uplapwar

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc II SUBJECT: Analytical chemistry

PAPER CODE and TITLE OF PAPER: CHA-401: Spectroscopic methods of analysis

#### **SECOND TERM**

| MONTH | THEORY / PRACTICALS TO BE COVERED                | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|-------|--------------------------------------------------|-------------------------------|---------|
|       | Unit I: Electron spectroscopy                    | 14                            |         |
| March |                                                  |                               |         |
|       | Unit II: X-ray methods of analysis               | 18                            |         |
| April | Unit III: Atomic mass spectroscopy               |                               |         |
|       | Unit V: Atomic absorption spectrophotometry      | 18                            |         |
| May   |                                                  |                               |         |
|       | Unit IV: Nuclear magnetic resonance spectroscopy | 10                            |         |
|       |                                                  |                               |         |
| June  |                                                  |                               |         |
|       |                                                  |                               |         |
|       |                                                  |                               |         |

(Teacher) (H.O.D.)



"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

#### TEACHING PLAN

ACADEMICYEAR: 2020-2021

NAME OF TEACHER: Sonal B Uplapwar

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc.II (Analytical Chemistry) SUBJECT: Analytical Chemistry

PAPER CODE and TITLE OF PAPER: CHA-306: Instrumental methods of analysis

#### FIRST TERM

| MONTH     | THEORY / PRACTICALS TO BE COVERED     | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|-----------|---------------------------------------|-------------------------------|---------|
| August    | Unit I: Polarography                  | 12                            |         |
| September | Unit II: Amperometric titration       | 12                            |         |
| October   | Unit III: Electrogravimetric analysis | 12                            |         |
| November  | Unit IV: Coulometric analysis         | 12                            |         |
| December  | Unit V: Automated analysis            | 12                            |         |

(Teacher) (H.O.D.)



"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

#### TEACHING PLAN

ACADEMICYEAR: 2020-2021

NAME OF TEACHER: Sonal B Uplapwar

FACULTY: Science DEPARTMENT: Chemistry

CLASS: TYBSc SUBJECT: Analytical Instrumentation

PAPER CODE and TITLE OF PAPER: CH-505: Analytical Instrumentation

#### FIRST TERM

| I         |                                                 | NO OF                         |         |
|-----------|-------------------------------------------------|-------------------------------|---------|
| MONTH     | THEORY / PRACTICALS TO BE COVERED               | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|           | Unit I: Spectrometry                            | 12                            |         |
|           |                                                 |                               |         |
| August    |                                                 |                               |         |
|           |                                                 |                               |         |
|           | The tart. In former days and the section.       | 12                            |         |
|           | Unit II: Infrared spectrometry                  | 12                            |         |
| September |                                                 |                               |         |
|           |                                                 |                               |         |
|           | Unit III A: Emission spectrometry               | 12                            |         |
|           | Unit III B: Atomic Absorption spectrophotometry | 12                            |         |
| October   |                                                 |                               |         |
|           |                                                 |                               |         |
|           |                                                 |                               |         |
|           | Unit IV: Potentiometry                          | 12                            |         |
|           | ·                                               |                               |         |
| November  |                                                 |                               |         |
| November  |                                                 |                               |         |
|           |                                                 |                               |         |
|           |                                                 |                               |         |
|           | Unit V: pHmetry                                 | 12                            |         |
| December  |                                                 |                               |         |
|           |                                                 |                               |         |
|           |                                                 |                               |         |
|           |                                                 |                               |         |

(Teacher) (H.O.D.)



"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon" NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence" Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: <a href="mjcollege@kces.in">mjcollege@kces.in</a>

#### **TEACHING PLAN**

ACADEMICYEAR: 2021-2022

NAME OF TEACHER: Sonal B Uplapwar

FACULTY: Science DEPARTMENT: Chemistry

CLASS: TYBSc SUBJECT: Analytical Techniques

PAPER CODE and TITLE OF PAPER: CH-605: Analytical Techniques

#### **SECOND TERM**

| MONTH    | THEORY / PRACTICALS TO BE COVERED               | NO.OF<br>LECTURES<br>REQUIRED | REMARKS |
|----------|-------------------------------------------------|-------------------------------|---------|
| January  | Unit I: Solvent Extraction                      | 12                            |         |
| February | Unit II: High performance liquid chromatography | 12                            |         |
| March    | Unit III: Gas chromatography                    | 12                            |         |
| April    | Unit IV: Ion exchange chromatography            | 12                            |         |
| May      | Unit V: Thermal methods                         | 12                            |         |

(Teacher) (H.O.D.)



"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

**TEACHING PLAN** 

ACADEMIC YEAR: 2020-2021

NAME OF TEACHER: Padvi Sandip Narpat

FACULTY: Science DEPARTMENT: Chemistry

CLASS: F.Y.B.Sc. SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CH-112 Organic Chemistry-I

#### FIRST TERM

|          |                                                           | NO OF                                 |             |
|----------|-----------------------------------------------------------|---------------------------------------|-------------|
| MONTH    | THEORY / PRACTICALS TO BE COVERED                         | NO.OF<br>LECTUR<br>ES<br>REQUIR<br>ED | REMAR<br>KS |
|          | Unit-1 Fundamental of Organic Chemistry                   |                                       |             |
|          | Physical effects, Electronic Displacements: Inductive     | 08                                    |             |
|          | Effect, Electromeric Effect, Resonance and                |                                       |             |
|          | Hyperconjugation, Cleavage of bonds: Homolysis and        |                                       |             |
|          | Heterolysis, Structure, shape and reactivity of organic   |                                       |             |
|          | molecules: Nucleophiles and Electrophiles ,Reactive       |                                       |             |
| October  | Intermediates: Carbocations, Carbanions and Free          |                                       |             |
|          | radicals,Strength of organic acids and bases: comparative |                                       |             |
|          | study with emphasis on factors affecting pK               |                                       |             |
|          | values, Aromaticity and Huckel's Rule                     |                                       |             |
|          | Unit-2 IUPAC Nomenclature of Organic Compound             |                                       |             |
|          | Rules for IUPAC nomenclature for 1) Saturated             | 01                                    |             |
|          | Hydrocarbons                                              |                                       |             |
|          | 2)Unsaturated Hydrocarbons –Alkenes & Alkynes             | 0.6                                   |             |
|          | 3)Organic copound containing one functional group         | 06                                    |             |
|          | And multiple bonds 4)Organic compounds containing two     |                                       |             |
| November | or more than two functional groups.                       |                                       |             |
|          |                                                           |                                       |             |
|          |                                                           |                                       |             |
|          |                                                           |                                       |             |

|           | 5)Cyclic Organic Compound 6)Bicyclic Organic                       |     |  |
|-----------|--------------------------------------------------------------------|-----|--|
|           | Compound 7) Aromatic Compounds                                     | 03  |  |
|           | Unit-3 Aliphatic Hydrocarbons                                      |     |  |
|           | Alkanes: (upto 5 carbons) Preparation : Catalytic                  | 0.7 |  |
|           | Hydrogenation ,Wurtz Reaction ,Kolbe's Synthesis, From             | 07  |  |
|           | Grignard Reagent, Reactions: Free Radical Substitution:            |     |  |
|           | Halogenation                                                       |     |  |
|           | Alkenes: (upto 5 carbons) Preparation                              |     |  |
| December  | :Eliminationreactions, Dehydration of Alcohols and                 |     |  |
|           | dehydrohalogenation of alkyl halides (Saytzeff's Rule):            |     |  |
|           | Cis alkenes (Partial Catalytic hydrogenation) and Trans            |     |  |
|           | alkenes (Birch Reduction). Reactions: Cis – Addition               |     |  |
|           | (alk.KMnO <sub>4</sub> ) and Trans –Addition (Bromine),Addition of |     |  |
|           | HX (Markovnikoff's and Anti-Markovnikoff's Addition ),             |     |  |
|           | Hydration ,Ozonolysis ,Oxymercuration-demercuration,               |     |  |
|           | Hydroboration-oxidation.                                           |     |  |
|           | Alkynes: (upto 5 carbons) Preparation: Acetylene from              | 0.5 |  |
|           | CaC <sub>2</sub> and conversion into higher alkynes ,by            | 05  |  |
| <b>T</b>  | dehalogenation of tetra halides and dehydrohalogenation            |     |  |
| January   | of vicinal-dihalides,Reactions: formation of metal                 |     |  |
|           | acetylides, addition of bromine and alkaline KMnO <sub>4</sub> ,   |     |  |
|           | Ozonolysis and oxidation with hot alkaline KMnO <sub>4</sub>       |     |  |
|           | Exam                                                               |     |  |
| February  |                                                                    |     |  |
| 1 cordury |                                                                    |     |  |
|           |                                                                    |     |  |

(Teacher) (H.O.D.)
Signature



#### K.C.E.Society's

#### MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

**TEACHING PLAN** 

ACADEMICYEAR: 2020-2021

NAME OF TEACHER: Padvi Sandip Narpat

FACULTY: Science DEPARTMENT: Chemistry

CLASS: F.Y.B.Sc. SUBJECT: Chemistry PAPER CODE and TITLE OF PAPER: CH-122 Organic Chemistry-II

#### **SECOND TERM**

|           | 1                                                                                                          | NO.OF    |         |
|-----------|------------------------------------------------------------------------------------------------------------|----------|---------|
| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                          | LECTURES | REMARKS |
| 1,101,111 | THEORY / FRACTICALS TO BE COVERED                                                                          | REQUIRED | KEWAKKS |
|           | Unit- 1 Aromatic Hydrocarbon                                                                               | 06       |         |
|           | Preparation- From Phenol, by decarboxylation, From                                                         | 00       |         |
|           | acetylene, from benzene sulphonic acid                                                                     |          |         |
|           | Reactions-Electrophilic Substitution - Nitration,                                                          |          |         |
|           | Halogenation, Sulphonation, Friedel Crafts Alkylation &                                                    |          |         |
| March     | Acylation, Side chain reaction                                                                             |          |         |
|           | Acytation, Side chain reaction                                                                             |          |         |
|           | Unit- 2 Alkyl and Aryl Halide                                                                              |          |         |
|           | a) <b>Alkyl Halide-</b> Types of Nucleophilic ( $S_N1$ , $S_N2$ , $S_Ni$ )                                 | 02       |         |
|           | reactions. Preparation- from Alkene and Alcohols.                                                          |          |         |
|           | <b>Reactions-</b> Hydrolysis, nitrite and nitro formation, nitrile                                         | 06       |         |
|           | & isonitrile formation, Williamsons ether synthesis                                                        |          |         |
|           | Elimination Vs Substitution, b) Aryl Halide-Preaparation                                                   |          |         |
|           | (chloro, bromo, iodo benzene)From Phenol, Sandmeyer                                                        |          |         |
|           | Reaction. Reaction (chlorobenzene) - Aromatic                                                              |          |         |
|           | Nucleophilic Substitution (replacement by -OH group),                                                      |          |         |
|           | Effect of nitro substitutent. Benzyne Mechanism:                                                           |          |         |
| April     | KNH <sub>2</sub> /NH <sub>3</sub> (or NaNH <sub>2</sub> /NH <sub>3</sub> ) Reactivity and relative         |          |         |
| 7 tpiii   | strength of C-X bond in Alkyl, Allyl, Benzyl, Vinyl and                                                    |          |         |
|           | Aryl Halide                                                                                                |          |         |
|           |                                                                                                            |          |         |
|           | Unit-3 Alcohols, Phenols and Ethers                                                                        |          |         |
|           | a) Alcohols-Preparation of Primary, secondary, tertiary                                                    | 0.1      |         |
|           | alcohols ,using Grignard Reagent , Ester hydrolysis,                                                       | 01       |         |
|           | Reduction of aldehydes, ketones, carboxylic acid and                                                       |          |         |
|           | esters.                                                                                                    | 07       |         |
|           | Reactions- with sodium, HX (Lucas Test), Esterification, oxidation (with PCC, alk. KMnO4, acid dichromate, | 07       |         |
|           | conc . HNO3 ), Oppeneaur Oxidation <b>Diols</b> - oxidation of                                             |          |         |
| May       | diols, Pinacol- Pinacolone rearangement.                                                                   |          |         |
| ·         | b) <b>Phenols</b> - Preparation Cumenehydroperoxide method,                                                |          |         |
|           | from diazonium salts. <b>Reactions</b> - Electrophilic                                                     |          |         |
|           | 110111 GIGZOIIIGIII SGIGS. INCACHUIIS- LICCHOPIIIIC                                                        |          |         |

|      | Substitution- Nitration, halogenation and sulphonation, Reimer- Tiemann Reaction, Gattermann-Koch Reaction, Houben - Hoesch Condensation, Chotten Baumann Reactions.                                                                                                                                                                                                                                                                       |    |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|      | c) Ethers (Aliphatic And Aromatic)- Cleavage of ethers with HI                                                                                                                                                                                                                                                                                                                                                                             | 02 |  |
| June | Unit-4 Aldehydes And Ketones (Aliphatic and Aromatic ) (Formaldehyde, Acetaldehyde, Acetone and Benzaldehyde) Preparation- from acid chlorides and from nitriles. Reactions- Reaction with HCN, ROH, NaHSO <sub>3</sub> ,NH <sub>2</sub> -G derivatives, Iodoform Test, Aldol Condensation, Cannizaros reaction, witig reaction, Benzoin Condensation, Clemensen reduction and Wolff Kishner reduction, Meerwein-Pondorff varly reduction. | 06 |  |
| July | Exam                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |

(Teacher) (H.O.D.)
Signature



#### K.C.E.Society's

#### MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

**TEACHING PLAN** 

**ACADEMIC YEAR: 2020- 2021** 

NAME OF TEACHER: Padvi Sandip Narpat

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc.-I SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CHO-106/CHA-106 Organic Chemistry-I

#### FIRST TERM

|          | T                                                                     |                |                 |
|----------|-----------------------------------------------------------------------|----------------|-----------------|
|          | TYPE OR IVER A CONTRACT OF THE CONTRACT                               | NO.OF          | DD1 6 1 D 7 7 7 |
| MONTH    | THEORY / PRACTICALS TO BE COVERED                                     | LECTURES       | REMARKS         |
|          | Unit-1 Nucleophilic Substitution                                      | REQUIRED<br>15 |                 |
|          | •                                                                     | 13             |                 |
|          | Aliphatic Nucleophilic substitution:                                  |                |                 |
|          | SN2, SN1, Mixed SN2, SN1 and SNi mechanism, the                       |                |                 |
|          | neighbouring group mechanism, neighbouring group                      |                |                 |
|          | participation by $\pi$ - & $\sigma$ - bonds , Anchimeric Assistance , |                |                 |
|          | The SN 1 mechanism, Nucleophilic substitutions at an                  |                |                 |
|          | allylic, aliphatic and a vinylic carbon. Reactivity effects of        |                |                 |
| February | substrate structure, attacking nucleophile, leaving group and         |                |                 |
|          | reaction medium.                                                      |                |                 |
|          | Aromatic Nucleophilic Substitution: SNAr, Benzyne                     |                |                 |
|          | mechanism. Reactivity: Effect of substrate, leaving group             |                |                 |
|          | and attacking nucleophile. The Von Richter, Sommelet-                 |                |                 |
|          | Hauser and Smiles rearrangements.                                     |                |                 |
|          | Unit-2 Aromatic Electrophilic Substitution                            | 01             |                 |
|          | Arenium ion mechanism, orientation and reactivity.                    |                |                 |
|          | energy profile diagram, calculation of partial rate factor, the       | 14             |                 |
|          | ortho/ para ratio, Ipso substitution, Orientation in other ring       |                |                 |
|          | systems such as Naphthalene, Anthracene, six and five                 |                |                 |
| March    | membered heterocycles, Diazonium coupling, Vilsmeier                  |                |                 |
|          | reaction, and Gattermann–Koch reaction.                               |                |                 |
|          | Unit-3 Addition Reaction                                              |                |                 |

|       | Addition to carbon-carbon multiple bonds and carbon          |    |  |
|-------|--------------------------------------------------------------|----|--|
|       | heteroatom multiple bonds- Mechanism and stereochemical      | 02 |  |
|       | aspects of addition reaction involving electrophile          |    |  |
|       | Structural effects and reactivity: Halogenations,            | 08 |  |
|       | Hydrohalogenation, Hydration, Hydroxylation,                 |    |  |
|       | Hydroboration, Epoxidation, Carbene addition,                |    |  |
|       | Hydrogenation, and Ozonolysis.                               |    |  |
|       | Unit-4 Linear Free Energy Relationship                       |    |  |
| April | Hammett plot, Hammett equation, substituent and reaction     | 06 |  |
|       | constants, physical significance of substituent and reaction |    |  |
|       | constants, substituent constant involving through            |    |  |
|       | conjugation. Use of Hammett plot and equation. Deviations    |    |  |
|       | from straight line plot. Concave upward deviation.           |    |  |
|       | Concave downward deviation. Steric effects, Taft equation,   | 04 |  |
|       | Steric parameters, solvent effects, and change of reaction   |    |  |
|       | constant.                                                    |    |  |
|       | Unit-5 Stereochemistry                                       |    |  |
|       | Concept of chirality and molecular dissymmetry,              |    |  |
|       | Recognition of symmetry elements and chiral centers,         | 10 |  |
| May   | Prochiral relationship, homotopic, enantiotopic and          |    |  |
|       | disteriotopic groups and faces. Recemic modifications and    |    |  |
|       | their resolution, R and S nomenclature. Geometrical          |    |  |
|       | isomerism E and Z in C, N, S, P containing compounds,        |    |  |
|       | Prochiralrelationship, stereospecific and stereoselective    |    |  |
|       | reactions, optical activity in biphenyls, spiranes, allenes  |    |  |
|       | Exam                                                         |    |  |
| June  |                                                              |    |  |
|       |                                                              |    |  |

(Teacher) (H.O.D.)
Signature



#### K.C.E.Society's

#### MOOLJI JAITHA COLLEGE, JALGAON

"An Autonomous College Affiliated to K.B.C., North Maharashtra University, Jalgaon"

NAAC Reaccredited "A" Grade (CGPA: 3.15) (3<sup>rd</sup> Cycle)| UGC honoured "College of Excellence"

Tel.: 0257 – 2234281, 2237363, Fax: 2237363, e-mail: mjcollege@kces.in

#### TEACHING PLAN

ACADEMIC YEAR: 2020-2021

NAME OF TEACHER: Padvi Sandip Narpat

FACULTY: Science DEPARTMENT: Chemistry

CLASS: M.Sc.-I SUBJECT: Chemistry

PAPER CODE and TITLE OF PAPER: CHO-206/CHA-206 Organic Chemistry-II

#### **SECOND TERM**

| MONTH     | THEORY / PRACTICALS TO BE COVERED                                                                                                                                                                                                                                                                                                              | NO.OF<br>LECTUR<br>ES<br>REQUIR<br>ED | REMAR<br>KS |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| July      | Unit- 1 Spectroscopy PMR: • Fundamentals of PMR, chemical shift, factors affecting chemical shift, anisotropic effect, spin-spin coupling, coupling constant, applications to simple structural problems integration coupling (1st order analysis). • Introduction to CMR and mass spectrometry. • Problems on UV, IR and PMR.                 | 15                                    |             |
|           | Unit- 2 Molecular Rearrangement and Reaction Intermediate Structure of carbenes, nitrenes, carbocations and carbanions intermediates.                                                                                                                                                                                                          | 01                                    |             |
| August    | generation and stability of carbenes, nitrenes, carbocations and carbanions intermediates ,Rearrangement reactions viz. Beckmann, Curtius, Hofmann, Lossen, Favorskii, Baeyer-Villiger, Wolff, Claisen, Pummerer, Wagner-Meerwin, Stevens, Dienone-Phenol, Sommelet-Hauser, Benzilic acid, Benzidine, Cope, Fries, Neber and Schmidt reaction. | 14                                    |             |
|           | Unit-3 Name Reaction Bayer-Villiger Oxidation, Reformatsky, Robinson annulation,                                                                                                                                                                                                                                                               | 02                                    |             |
| September | Stork enamine, Sharpless asymmetric epoxidation, Ene,<br>Barton, Hell-Volhard-Zelinsky reaction, Shapiro reaction,<br>Chichibabin reaction, Vislmair Hack reaction, Ulman<br>reaction, Rosenmund reaction, Darzen reaction,<br>Knovenagel reaction, and Biginelli reaction.                                                                    | 13                                    |             |

|          | Unit-4 Synthetic Reagents Oxidation reactions: CrO3, PDC, PCC (Corey's reagent), KMnO4, MnO2, Swern oxidation,                                                                                                                                                         | 04 |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| October  | SeO2, Pb(OAc)4, Pd-C, OSO4, m-CPBA, O3, NaIO4, HIO4, chloranil, DDQ, and Oppenauer oxidation. • Reduction reactions: LiAlH4, NaBH4, NaCNBH3, MPV reduction, Na/liquor NH3, H2/Pd-C, Willkinsons catalyst, DIBAL-H, Wolff Kishner reduction, Zn-Hg/H2O/HCL, and Bu3SnH. | 11 |  |
| November | Exam                                                                                                                                                                                                                                                                   |    |  |

(Teacher) (H.O.D.)

#### **Khandesh College Education Society's**

Moolji Jaitha College, Jalgaon
An "Autonomous College" Affiliated to
Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

#### **School of Chemical Sciences**

#### **TEACHING PLAN**

Name of Teacher: Dr. Vasim R. Shaikh Class: T. Y. B. Sc.

(Chemistry)

Sem.-V

Subject/Paper : CH-501: Principles of Physical **Faculty:** Science

Chemistry-I

| Month     | Торіс                               | Lectures<br>Allotted | Review<br>(Complete/<br>Incomplete) | Action plan if incomplete |
|-----------|-------------------------------------|----------------------|-------------------------------------|---------------------------|
| August    | Unit-3: Phase Equilibrium:          | 11                   |                                     |                           |
|           | Phases, Components and Degrees      |                      |                                     |                           |
|           | of freedom of a system, Criteria of |                      |                                     |                           |
|           | phase equilibrium. Gibbs Phase      |                      |                                     |                           |
|           | rule and its thermodynamic          |                      |                                     |                           |
|           | derivation. Derivation of Clausius  |                      |                                     |                           |
|           | -Clapeyron equation and its         |                      |                                     |                           |
|           | importance in phase equilibria.     |                      |                                     |                           |
|           | Phase diagrams of one-component     |                      |                                     |                           |
|           | systems (water and sulphur) and     |                      |                                     |                           |
|           | two component systems involving     |                      |                                     |                           |
|           | eutectics, Congruent and            |                      |                                     |                           |
|           | Incongruent melting points (lead-   |                      |                                     |                           |
|           | silver, FeCl3-H2O only), Related    |                      |                                     |                           |
|           | Numerical.                          |                      |                                     |                           |
| September | <b>Unit-2: Chemical kinetics</b>    | 11                   |                                     |                           |
|           | The concept of reaction rates.      |                      |                                     |                           |
|           | Effect of temperature, Pressure,    |                      |                                     |                           |
|           | Catalyst and other factors on       |                      |                                     |                           |
|           | reaction rates. Order and           |                      |                                     |                           |
|           | molecularity of a reaction.         |                      |                                     |                           |
|           | Derivation of integrated rate       |                      |                                     |                           |
|           | equations for zero, first and       |                      |                                     |                           |
|           | second order reactions (both for    |                      |                                     |                           |
|           | equal and unequal initial           |                      |                                     |                           |
|           | concentrations of reactants) Half-  |                      |                                     |                           |
|           | life of a reaction, Pseudo order    |                      |                                     |                           |
|           | reactions, General methods for      |                      |                                     |                           |
|           | determination of order of a         |                      |                                     |                           |
|           | reaction. Effect of temperature on  |                      |                                     |                           |
|           | reaction rate, Arrhenius equation   |                      |                                     |                           |
|           | (exponential and integrated form),  |                      |                                     |                           |
|           | Collision theory, Concept of        |                      |                                     |                           |

|          | activation energy and its calculation from Arrhenius equation, Related numerical.                                                                                                                                                                                                                                                                                |    |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| October  | Unit-4: Electrochemical Cell: Introduction, overview of electrode processes, Faradaic and Non-Faradaic Processes, Introduction to electrical double layer, Factors affecting electrode reaction rate and current.                                                                                                                                                | 06 |  |
| November | Unit-4: Electrochemical Cell: Classification of electrochemical cell, EMF expression for chemical cell with and without transference, Liquid junction potential, Types of liquid junction potential, Minimization of liquid junction potential.                                                                                                                  | 06 |  |
|          | Unit-1: Basic Quantum Chemistry: Failures of Classical Mechanics, Origin of quantum mechanics, Particle aspect of radiation: Blackbody radiation, Photoelectric effect, Compton Effect, de Broglie's hypothesis: Matter waves, Heisenberg uncertainty principle, Application of Heisenberg's principle.                                                          | 06 |  |
| December | Unit-1: Basic Quantum Chemistry: Interpretation of wave function, Significance of ψ and ψ2, Normalization of wave function Operators and operator algebra, Eigen functions and Eigen values, various operators in quantum mechanics: Linear momentum, Kinetic energy and Total energy operator (only equations no derivations), Postulates of quantum mechanics. | 06 |  |

| Signature: |
|------------|
|            |

Director/Head Name of Teacher: Dr. Vasim R. Shaikh

# ESTD. 1945

#### **Khandesh College Education Society's**

Moolji Jaitha College, Jalgaon An "Autonomous College" Affiliated to Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

#### **School of Chemical Sciences**

#### **TEACHING PLAN**

Name of Teacher: Dr. Vasim R. Shaikh T. Y. B. Sc. Class:

> (Chemistry) Sem.-VI

Subject/Paper CH-601: Principles of Physical **Faculty:** Science

Chemistry-II

| Month | Торіс                                                       | Lectures<br>Allotted | Review<br>(Complete/<br>Incomplete) | Action plan if incomplete |
|-------|-------------------------------------------------------------|----------------------|-------------------------------------|---------------------------|
| March | <b>Unit-3: Photochemistry:</b> Laws of                      | 11                   | _                                   |                           |
|       | photochemistry, Quantum yield,                              |                      |                                     |                           |
|       | Examples of low and high quantum                            |                      |                                     |                           |
|       | yields, Consequence of light                                |                      |                                     |                           |
|       | absorption by atoms and molecules,                          |                      |                                     |                           |
|       | Jablonski diagram, Fluorescence,                            |                      |                                     |                           |
|       | Phosphorescence, Quenching.                                 |                      |                                     |                           |
|       | Experimental setup for determination of quantum yield       |                      |                                     |                           |
|       | determination of quantum yield with actinometer as detector |                      |                                     |                           |
|       | Photochemical gas reactions,                                |                      |                                     |                           |
|       | Photolysis of ammonia,                                      |                      |                                     |                           |
|       | Combination of H <sub>2</sub> and Cl <sub>2</sub> reaction, |                      |                                     |                           |
|       | Reaction between H <sub>2</sub> and Br <sub>2</sub> ,       |                      |                                     |                           |
|       | Photosensitized gas reaction, H2 and                        |                      |                                     |                           |
|       | O <sub>2</sub> , H <sub>2</sub> and CO,                     |                      |                                     |                           |
|       | Chemiluminescence, Related                                  |                      |                                     |                           |
|       | numerical.                                                  |                      |                                     |                           |
| April | <b>Unit-2:</b> Nuclear Chemistry:                           | 12                   |                                     |                           |
|       | Introduction, Radioactive                                   |                      |                                     |                           |
|       | elements, Types of radioactive                              |                      |                                     |                           |
|       | decay, Decay schemes, General                               |                      |                                     |                           |
|       | characteristic of radioactive decay,                        |                      |                                     |                           |
|       | Decay kinetics, Decay constant,                             |                      |                                     |                           |
|       | Half-life period, Mean life, Units                          |                      |                                     |                           |
|       | of radioactivity.                                           |                      |                                     |                           |
|       | Application of radioactivity –                              |                      |                                     |                           |
|       | Radiochemical principle of tracer                           |                      |                                     |                           |
|       | technique; Application of tracer                            |                      |                                     |                           |
|       | technique – Chemical                                        |                      |                                     |                           |
|       | investigation reaction mechanism-                           |                      |                                     |                           |
|       | esterification, hydrolysis,                                 |                      |                                     |                           |
|       | Oxidation - Oxidation of CO,                                |                      |                                     |                           |

|       | Structure determination - PCl5 molecules, Thiosulphate ion, C-        |    |  |
|-------|-----------------------------------------------------------------------|----|--|
|       | 14 dating and tritium dating, Medical applications- Thyroditis,       |    |  |
|       | Bone fracture Healing, Brain tumor location, Defects in Blood         |    |  |
|       | Circulation. Nuclear Fusion / Fission as source                       |    |  |
|       | of energy with example                                                |    |  |
|       | Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and    |    |  |
|       | its management with case study. Related numerical.                    |    |  |
|       | UNIT-4. Crystal Structure:                                            | 05 |  |
|       | Forms of solids. Symmetry elements, unit cells, crystal               |    |  |
|       | systems, Bravais lattice types and                                    |    |  |
|       | identification of lattice planes.<br>Laws of Crystallography - Law of |    |  |
|       | constancy of interfacial angles,<br>Law of rational indices. Miller   |    |  |
|       | indices. X–Ray diffraction by crystals, Bragg's law and Bragg's       |    |  |
| May   | method.  UNIT-4. Crystal Structure:                                   | 06 |  |
| Iviay | Structures of NaCl, KCl and CsCl                                      | 00 |  |
|       | (qualitative treatment only).  Defects in crystals: Shottkey and      |    |  |
|       | Frenkel defects. Liquid Crystal,<br>Types and Applications. Related   |    |  |
|       | numerical                                                             |    |  |
|       | Unit-1. Investigation of Molecular Structure:                         | 11 |  |
|       | Introduction, Dipole Moment,                                          |    |  |
|       | Induced dipole moment, Electrical polarization of molecules.          |    |  |
|       | Orientation of dipole in an electric field, Debye equation. Method of |    |  |
|       | determination of dipole moment,<br>Vapour temperature method,         |    |  |
|       | Molecular structure and dipole moment                                 |    |  |
|       | Interaction of electromagnetic                                        |    |  |
|       | radiation with molecules, Various types of spectra Rotational,        |    |  |
|       | Vibration and Electronic energy levels; with principle and example    |    |  |
|       | of each type. Rotational spectroscopy: Rigid                          |    |  |
|       | and non-rigid rotor diatomic                                          |    |  |
|       | molecule-Moment of inertia,<br>Energy Levels, Selection rule,         |    |  |

| Intensities of spectral lines,    |  |
|-----------------------------------|--|
| Determination of bond lengths of  |  |
| diatomic and linear triatomic     |  |
| molecules, Isotopic substitution. |  |
| Related numerical                 |  |

Director/Head Name of Teacher: Dr. Vasim R. Shaikh

# **Khandesh College Education Society's**

Moolji Jaitha College, Jalgaon
An "Autonomous College" Affiliated to
Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

#### **School of Chemical Sciences**

#### **TEACHING PLAN**

Name of Teacher: Dr. Vasim R. Shaikh Class: S. Y. B. Sc.

(Chemistry)

Sem.-III

Subject/Paper : CH-231: Physical Chemistry-II **Faculty:** Science

| Month     | Торіс                                                                                                                                                                                                                                                                                                                                                                                         | Lectures<br>Allotted | Review (Complete/ Incomplete) | Action plan if incomplete |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|---------------------------|
| September | Unit I: Gaseous State: Introduction, general characteristics of gases, parameters (volume, pressure temperature and number of moles) of a gas, gas laws (Boyle's law, Charles law, Avogadro's law), Ideal-gas equation, kinetic molecular theory of gases, deviations from ideal behaviour, compressibility factor, effect of pressure and temperature variation on deviations, van der Waals | 08                   |                               |                           |
| October   | equation.  Unit I: Gaseous State: liquefaction of gases-critical phenomenon, van der Waals equation and critical constants, related numericals.                                                                                                                                                                                                                                               | 02                   |                               |                           |
|           | Unit II: Theory of Electrolytic Dissociation: Introduction, Arrhenius theory of ionization, migration of ions, relative speed of ions: Hittorf's rule, transport number and its determination by Hittorf's and moving boundary method, Kohlrausch's law of independent                                                                                                                        | 08                   |                               |                           |

|          | migration of ions and its application for the calculation of degree of dissociation,                                                                                                                                                                                                                                                        |    |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| November | Unit II: Theory of Electrolytic Dissociation: Conductometric titration: titration of a strong acid against a strong base, titration of a weak acid against a strong base, titration of a strong acid against a weak base, titration of a weal acid against a weak base.                                                                     | 02 |  |
|          | Unit III: Solutions: Introduction, concentration of solutions, ways of expressing concentration (per cent by volume, per cent by weight, molarity, molality, mole fraction), solutions of gases in gases, Henry's law, solutions of liquids in liquids, solubility of completely miscible liquids, solubility of partially miscible liquids | 05 |  |
| December | Unit III: Solutions: Phenol-water system, triethylamine-water system, nicotine-water system, vapour pressures of liquid-liquid solutions: first type of mixtures of miscible liquids, second type of mixtures of miscible liquids and third type of mixtures of miscible liquids, solutions of solids in liquids.                           | 05 |  |

Director/Head Name of Teacher: Dr. Vasim R. Shaikh

# **Khandesh College Education Society's**

Moolji Jaitha College, Jalgaon
An "Autonomous College" Affiliated to
Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

#### **School of Chemical Sciences**

#### **TEACHING PLAN**

Name of Teacher: Dr. Vasim R. Shaikh Class: S. Y. B. Sc.

(Chemistry)

Sem.-IV

Subject/Paper : CH-241: Physical Chemistry-III **Faculty:** Science

| Month | Торіс                                                               | Lectures<br>Allotted | Review (Complete/ Incomplete) | Action plan if incomplete |
|-------|---------------------------------------------------------------------|----------------------|-------------------------------|---------------------------|
| March | Unit II: Electromotive Force:                                       | 06                   |                               | _                         |
|       | Introduction, measurement of                                        |                      |                               |                           |
|       | electromotive force of an                                           |                      |                               |                           |
|       | unknown cell,                                                       |                      |                               |                           |
|       | Weston standard cell, reversible                                    |                      |                               |                           |
|       | cells, relation between                                             |                      |                               |                           |
|       | electromotive force                                                 |                      |                               |                           |
|       | and free energy, single electrode                                   |                      |                               |                           |
|       | potential, standard electromotive force of a cell, determination of |                      |                               |                           |
|       | electromotive of a half-cell,                                       |                      |                               |                           |
|       | Nernst equation,                                                    |                      |                               |                           |
|       | reference electrode, primary                                        |                      |                               |                           |
|       | reference electrode: Standard                                       |                      |                               |                           |
|       | Hydrogen                                                            |                      |                               |                           |
|       | Electrode (SHE)                                                     |                      |                               |                           |
| April | <b>Unit II: Electromotive Force:</b>                                | 04                   |                               |                           |
|       | Secondary reference electrode:                                      |                      |                               |                           |
|       | standard silver-silver                                              |                      |                               |                           |
|       | electrode, Calomel electrode,                                       |                      |                               |                           |
|       | glass electrode, quinhydrone                                        |                      |                               |                           |
|       | electrode,                                                          |                      |                               |                           |
|       | determination of pH of a solution                                   |                      |                               |                           |
|       | using the quinhydrone electrode                                     |                      |                               |                           |
|       | and glass                                                           |                      |                               |                           |
|       | electrode, potentiometric titrations                                |                      |                               |                           |
|       | (acid-base titrations, oxidation-                                   |                      |                               |                           |
|       | reduction                                                           |                      |                               |                           |
|       | titrations and precipitation titrations), related numericals.       |                      |                               |                           |
|       | unanons), related numericals.                                       |                      |                               |                           |
|       | Unit III: Chemical                                                  | 10                   |                               |                           |
|       | Thermodynamics: Introduction,                                       | 10                   |                               |                           |
|       | enthalpy of a system, molar heat                                    |                      |                               |                           |

|       | 1                                    |    | 1 | 1 |
|-------|--------------------------------------|----|---|---|
|       | capacities, relation between         |    |   |   |
|       | Cp and Cv, Joule-Thomson effect,     |    |   |   |
|       | concept of entropy, standard         |    |   |   |
|       |                                      |    |   |   |
|       | entropy,                             |    |   |   |
|       | cocept of residual entropy,          |    |   |   |
|       | Clapeyron equation, Clausius-        |    |   |   |
|       | Clapeyron                            |    |   |   |
|       | _ · ·                                |    |   |   |
|       | equation, integrated form of         |    |   |   |
|       | Clausius- Clapeyron equation,        |    |   |   |
|       | applications of                      |    |   |   |
|       | Clausius-Clapeyron equation,         |    |   |   |
|       | fugacity and activity, partial molar |    |   |   |
|       |                                      |    |   |   |
|       | properties,                          |    |   |   |
|       | chemical potential and its           |    |   |   |
|       | significance, Gibb's-Duhem           |    |   |   |
|       | equation.                            |    |   |   |
| May   | Unit I: Theory of Dilute             | 10 |   |   |
| 1,144 | Solutions:                           | 10 |   |   |
|       | Introduction, vapour pressure of a   |    |   |   |
|       |                                      |    |   |   |
|       | liquid, Raoult's law of vapour       |    |   |   |
|       | pressure                             |    |   |   |
|       | colligative properties, lowering of  |    |   |   |
|       | vapour pressure, relative lowering   |    |   |   |
|       | of                                   |    |   |   |
|       | vapour pressure, relation between    |    |   |   |
|       |                                      |    |   |   |
|       | relative lowering of vapour          |    |   |   |
|       | pressure and                         |    |   |   |
|       | molar mass of solute, elevation of   |    |   |   |
|       | boiling point, relation between      |    |   |   |
|       | elevation                            |    |   |   |
|       | of boiling point and molar mass of   |    |   |   |
|       |                                      |    |   |   |
|       | solute, Landberger's method for      |    |   |   |
|       | the                                  |    |   |   |
|       | determination of elevation of        |    |   |   |
|       | boiling point, depression of         |    |   |   |
|       | freezing point,                      |    |   |   |
|       | relation between depression of       |    |   |   |
|       | freezing point and molar mass of     |    |   |   |
|       |                                      |    |   |   |
|       | solute,                              |    |   |   |
|       | osmotic pressure, van's Hoff         |    |   |   |
|       | equation for osmotic pressure of a   |    |   |   |
|       | solution,                            |    |   |   |
|       | determination of molar mass of a     |    |   |   |
|       |                                      |    |   |   |
|       | solute from osmotic pressure         |    |   |   |
|       | measurements, related numericals.    |    |   |   |
|       |                                      |    |   |   |

Director/Head Name of Teacher: Dr. Vasim R. Shaikh