K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी -'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date:- 01/08/2024

NOTIFICATION

Sub :- CBCS Syllabi of B. Sc. in Microbiology (Sem. I & II)

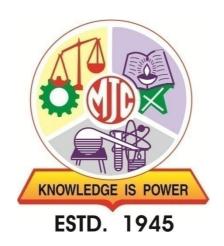
Ref. :- Decision of the Academic Council at its meeting held on 27/07/2024.

The Syllabi of B. Sc. in Microbiology (First and Second Semesters) as per **NATIONAL EDUCATION POLICY – 2020 (2024 Pattern)** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2024-25.

Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies

To:


- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

Khandesh College Education Society's

Moolji JaithaCollege,Jalgaon

An "Autonomous College"

Affiliated to
Kavayitri Bahinabai Chaudhari
North Maharashtra University, Jalgaon 425001

STRUCTURE AND SYLLABUS

B.Sc. Honors/Honors with Research

(F.Y.B.Sc. Microbiology)

Under Choice Based Credit System(CBCS) and as per NEP-2020 Guidelines

[w.e.f.AcademicYear:2024-25]

Preface

Skilled human resources is a prerequisite in higher education, and it is necessary to acquire a thorough knowledge of theoretical concepts and hands-on laboratory methods. The Moolji Jaitha College (Autonomous) has adopted a department-specific modelas per the guidelines of UGC, NEP-2020 and the Government of Maharashtra. The Board of Studies in Microbiology and Biotechnology of the college has prepared the syllabus forthe first-year undergraduate of Microbiology. The syllabus cultivates theoretical and practical know-how in different fields of microbiology. The contents of the syllabus have been prepared to accommodate the fundamental and applied aspects of various microbiology disciplines. Besides this, in the first year, the students will be enlightened about the skills related to microbial isolation, identification, and testing, which will enhance their employability.

The overall curriculum of three / four years covers general microbiology, biomolecules and microbial metabolism, molecular biology and microbial genetics, medical microbiology and immunology, industrial and applied microbiology, and environmental microbiology, and also covers various biotechniques. Furthermore, the syllabus is meticulously structured to cater to Microbiology's present and future needs of the Industrial Sector, research field, Environmental Area, Entrepreneurship, etc., ensuring that our graduates are well-prepared for real-world challenges. The curriculum strongly emphasises imparting hands-on skills, with more experiments that run hand-in-hand with theory. The detailed syllabus of each paper is appended with a list of suggested readings.

Program Outcomes (PO) for B.Sc. Program:

Program outcomes associated with a B.Sc. degree are as follows:

- 1. Graduates should have a comprehensive knowledge and understanding of the fundamental principles, theories, and concepts in their chosen field of study.
- 2. Graduates should possess the necessary technical skills and competencies related to their discipline, including laboratory techniques and data analysis.
- 3. Graduates should be able to identify, analyze, and solve complex problems using logical and critical thinking skills. They should be able to apply scientific methods and principles to investigate and find solutions.
- 4. Graduates should be proficient in effectively communicating scientific information, both orally and in writing.
- 5. Graduates should have a basic foundation in research methods and be capable of designing and conducting scientific investigations.
- 6. Graduates should be able to work effectively as part of a team, demonstrating the ability to collaborate with others, respect diverse perspectives, and contribute to group projects.
- 7. Graduates should recognize the importance of ongoing learning and professional development. They should be equipped with the skills and motivation to continuously learn, adapt to new technologies and advancements in their field, and stay updated with current research.

Program Specific Outcome PSO (B.Sc. Microbiology):

After completion of this course, students are expected to learn/understand the following:

1	Isolation, identification and characterization of various microbes from diverse habitats.
2	Impact of various groups of microbes on atmosphere, plant, human and animal health.
3	Principle and applications of various bio-analytical tools and techniques
4	Structure, properties, pathways and applications of biomolecules in various fields
5	Biochemical mechanisms, regulation and application of enzymes in various sectors
6	Applications of microbes in various fields such as agriculture, industry, medical etc.

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree depending upon the number of credits secured;

Levels	Qualification Title	Credit Requ	irements	Semester	Year
		Minimum	Maximum		
4.5	UG Certificate	40	44	2	1
5.0	UG Diploma	80	88	4	2
5.5	Three Year Bachelor's Degree	120	132	6	3
6.0	Bachelor's Degree- Honours	160	176	8	4
	Or				
	Bachelor's Degree- Honours with Research				

Credit distribution structure for Three/ Four year Honors/ Honors with Research Degree Programme with Multiple Entry and Exit

F.Y. B.Sc.

Year (Lev el)	Sem	Subject-I (M-1)	Subject-II (M-2)	Subject-III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT, RP	Cumulative Credits/Sem	Degree/ Cumulative Credit	
	I	DSC-1(2T) DSC-2(2P)	DSC-1(2T) DSC-2(2P)	DSC-1(2T) DSC-2(2P)	OE-1(2T)		AEC-1(2T) (Eng) VEC-1(2T) (ES) IKS(2T)	CC-1(2T)	22	UG	
(4.5)	II	DSC-3(2T) DSC-4(2P)	DSC-3(2T) DSC-4(2P)	DSC-3(2T) DSC-4(2P)	OE-2(2T) OE-3(2P)		AEC-2(2T) (Eng) VEC-2(2T) (CI)	CC-2(2T)	22	Certificate	
	Cum. Cr.	8	8	8	6		10	4	44		
	Exit opti	on: Award of UG	Certificate with	44 credits and a	n additional 4	credits core	NSQF course/ Intern	nship OR Continu	e with Major and	Minor.	

S.Y. B.Sc.

Year (Level)	Sem	Subject-I (M-1) Major*		Subject-II (M-2) Minor #	Subject- III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
		Mandatory (DSC)	Elective (DSE)	(MIN)							
		(/	(DSE)								
	III	DSC-5(2T) DSC-6(2T) DSC-7(2P)		MIN-1(2T) MIN-2(2T) MIN-3(2P)		OE-4(2T)	SEC-1(2T)	AEC-3(2T) (MIL)	CC-3(2T) CEP(2)	22	UG
2 (5.0)	IV	DSC-8(2T) DSC-9(2T) DSC-10(2P)		MIN-4(2T) MIN-5(2P)		OE-5(2T)	SEC-2(2T) SEC-2(2P)	AEC-4(2T) (MIL)	CC-4(2T)	22	Diploma
	Cum . Cr.	12		10		4	6	4	8	44	
	Exit or	otion: Award of U	JG Diploma i	n Major and Mi	nor with 88 cr	edits and an	additional 4 cr	edits core NSQF cou	ırse/ Internship OI	R Continue with M	lajor & Minor.

* Student must choose one subject as a Major subject out of M-1, M-2 and M-3 that he/she has chosen at First year #Student must choose one subject as a Minor subject out of M-1, M-2 and M-3 that he/she has chosen at First year (Minor must be other than Major)

© OJT/Internship/CEP should be completed in the summer vacation after 4th semester

T.Y. B.Sc.

Year (Level)	Sem	Subject-I (M-1) Major		Subject- II (M-2) Minor	Subject- III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
		Mandatory (DSC)	Elective (DSE)	(MIN)							
	v	DSC-11(2T) DSC-12(2T) DSC-13(2T) DSC-14(2P) DSC-15(2P)	DSE-1A/B (2T) DSE-2A/B (2P)				VSC-1(2T) VSC-2(2P)		OJT/Int (4)	22	
3 (5.5)	VI	DSC-16(2T) DSC-17(2T) DSC-18(2T) DSC-19(2T) DSC-20(2T) IKS DSC-21(2P) DSC-22(2P)	DSE-3A/B (2T) DSE-4A/B (2P)				VSC-3(2T) VSC-4(2P)			22	UG Degree
	Cum . Cr.	24	8				8		4	44	
			Exi	t option: Awar	d of UG Degr	ee in Major v	vith 132 credits	OR Continue	with Major and Minor		

Fourth Year B.Sc. (Honours)

Year (Level)	Sem	Major Cor	e Subjects	Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-23(4T) DSC-24(4T) DSC-25(4T) DSC-26(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)					22	UG
IV (6.0)	VIII	DSC-27(4T) DSC-28(4T) DSC-29(4T) DSC-30(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					OJT/Int (4)	22	Honours Degree
	Cum. Cr.	28	8	4				4	44	
			For	ur Year UG Honors	Degree in Ma	ajor and	Minor with 176 cred	lits		

Fourth Year B.Sc. (Honours with Research)

Year (Level)	Sem	Major Cor	e Subjects	Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-23(4T) DSC-24(4T) DSC-26(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)				RP(4)	22	UG
IV (6.0)	VIII	DSC-27(4T) DSC-28(4T) DSC-30(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					RP(8)	22	Honours with Research Degree
	Cum. Cr.	20	8	4				12	44	
			Four Year	UG Honours with R	Research Degr	ee in M	ajor and Minor with	176 credits		

Sem- Semester, DSC- Department Specific Course, DSE- Department Specific Elective, OE/GE- Open/Generic elective, VSC- Vocational Skill Course, SEC- Skill Enhancement Course, VSEC- Vocation and Skill Enhancement Course, AEC- Ability Enhancement Course, IKS- Indian Knowledge System, VEC- Value Education Course, T- Theory, P- Practical, CC-Co-curricular RM- Research Methodology, OJT- On Job Training, FP- Field Project, Int- Internship, RP- Research Project, CEP- Community Extension Programme, ENG- English, CI- Constitution of India, MIL- Modern Indian Laguage

- Number in bracket indicate credit
- The courses which do not have practical 'P' will be treated as theory 'T'
- If student select subject other than faculty in the subjects M-1, M-2 and M-3, then that subject will be treated as Minor subject, and cannot be selected as Major at second year.

Details of F.Y. B.Sc. (Microbiology)

Course	Course	Course Code	Course Title	C 114-		hing l Weel	Hours/	Marks			
	Type	Course Code		Credits	T	P	Total	Inter	nal	Exte	ernal
								T	P	T	P
	Semester I, Level – 4.5										
DSC-1	DSC	MIB-DSC-111	Fundamentals of Microbiology	2	2		2	20		30	
DSC-2	DSC	MIB-DSC-112	Practical course on Basic	2		4	4		20		30
			Microbiology								
OE-1	OE	MIB-OE-111	Health and Human Microbiome	2	2		2	20		30	
			Semester II, Level	- 4.5							
DSC-3	DSC	MIB-DSC-121	Basic Techniques in Microbiology	2	2		2	20		30	
DSC-4	DSC	MIB-DSC-122	Practical course on Microbial	2		4	4		20		30
			techniques								
OE-2	OE	MIB-OE-121	Microbial diseases and control	2	2		2	20		30	
OE-3	OE	MIB-OE-122	Practical course on Microbiology	2		4	4		20		30

Examination Pattern

Theory Question Paper Pattern:

- 30 (External) +20 (Internal) for 2 credits
 - External examination will be of 1½ hours duration
 - There shall be 3 questions Q1 carrying 6 marks and Q2, Q3 carrying 12 marks each. while the tentative pattern of question papers shall be as follows;
 - o Q1 Attempt any 2 out of 3 sub-questions; each 3 marks
 - o Q 2 and Q3 Attempt any 3 out of 4 sub-question; each 4 marks.

Rules of Continuous Internal Evaluation:

The Continuous Internal Evaluation for theory papers shall consist of two methods:

- **1. Continuous & Comprehensive Evaluation (CCE):** CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:
 - i. Individual Assignments
 - ii. Seminars/Classroom Presentations/Quizzes
 - iii. Group Discussions/Class Discussion/Group Assignments
 - iv. Case studies/Case lets
 - v. Participatory & Industry-Integrated Learning/Field visits
 - vi. Practical activities/Problem Solving Exercises
 - vii. Participation in Seminars/Academic Events/Symposia, etc.
 - viii. Mini Projects/Capstone Projects
 - ix. Book review/Article review/Article preparation
 - x. Any other academic activity
 - xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that three units of the syllabus are mapped to the CCEs.
- **2. Internal Assessment Tests (IAT):** IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher is at liberty to decide which units are

to be assessed using CCEs and which unit is to be assessed on the basis of IAT.

The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations.

The subject teachers must communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Practical Examination Credit 2: Pattern (30+20)

External Practical Examination (30 marks):

- Practical examination shall be conducted by the respective department at the end of the semester.
- Practical examination will be of 3 hours duration and shall be conducted as per schedule.
- Where an incubation condition is required, a practical examination shall be conducted for 2 consecutive days for 2 hours/day.
- There shall be 05 marks for journal and viva voce. A certified journal is compulsory to appear for practical examination.
- The external practical examination of SEC will be of 25 marks, and there will be no internal exam for SEC practical.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by the department as per the schedule given.
- For internal practical examination, students must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and the Head of the department.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities assigned by the faculty during regular practicals. For details, refer to internal theory examination guidelines.
- Finally, 40 (10+30) marks of performance of the student will be converted into 20 marks.

F.Y.B.Sc. (Microbiology) Semester I

FYBSc (Microbiology) Semester I

MIB-DSC-111: Fundamentals of Microbiology
Credits: 2 **Total Hours: 30**

1 otal F	10urs: 30 Credits: 2	
Course	To understand the scope of microbiology	
objectives	 To make the student aware of the history of microbiology 	
	 Acquaint concepts related toprokaryotic cell 	
	To understand the microscopic techniques	
Course	After successful completion of this course, students are expected to:	
outcomes	•Aware of the scope of subject and microbial diversity	
	•Know general pertinent tohistorical aspects related to microbiology	
	•Infer anatomy of prokaryotic cellsand functions of various cell parts	
	•Aware of fundamentals of microscopy and staining techniques	
Unit	TopicParticular	Hours
	Scope and diversity of microbiology	
	 Scope of microbiology in the various disciplines 	
	 Concept of Prokaryotic and Eukaryotic cells 	
	Concept of microbial diversity with various examples	
	• Generalcharacteristics,morphological features, classification and	
Unit I	significance of -Bacteria, Fungi, Algae, Protozoa and Viruses	7
	• Other forms of microbes: Rickettsia, Mycoplasma, Actinomycetes,	
	Archaebacteria, Cyanobacteria	
	•	
	Bionomical nomenclature and basic rules	
	Historical developments	
	• Spontaneous generation (abiogenesis) – Concept and experimental	
	evidence to disprove it	
	Discovery of Microscope	
	• Germ theory of Fermentation	
T7 1/ T7	Germ theory of Disease: Koch's and Revere's postulate	8
	•	U
	• Development of pure culture methods, solidifying agent (potato,	
	gelatin, agar agar)	
	• Contribution(s) of the following scientists in the development of	
	microbiology: Antonie von Leeuwenhoek, Louis Pasteur, Robert	
	Koch, Alexander Fleming. Anatomy of Prokaryotic cell	
	Ultra-structure of bacterial cell	
	Cell size, shape and arrangement of bacteria	
	• Structure, function and chemical composition of the following	
Unit III	o Glycocalyx/capsule, flagella, pili, cell wall (with concept of	8
	spheroplasts, protoplasts, and L-forms), cell membrane, nucleoid	
	mesosomes, plasmid, Ribosome, cytoplasmic inclusions (volutin	
	granules, PHB granule, glycogen, carbohydrates, Magnetosomes,	
	gas vesicles, carboxysomes, chlorosome and sulphur granules)	
	Endospore structure and formation	
	Microscopy and staining	
Unit IV	 Basics of microscopy: magnification, resolution, numerical aperture, 	7
	illumination system.	1
1	-	,

- Compound microscope: construction, principle with ray diagram, working, lens system, handling and care of the microscope
- Oil immersion objective: importance and working
- Concept and types of aberrations
- Concepts of dye and stain (acidic and basic); mordant and fixative
- Smear preparation and basics of staining techniques
- Methods of staining:
 - Simple (Monochrome and Negative)
 - o Differential (Gram's and Acid fast)
 - Other staining: capsule, spore, metachromatic granules etc.

- Tortora, G. J., Funke, B. R., & Case, C. L. (2008). Microbiology: An Introduction (9thed.). Pearson Education, New Delhi.
- Talaro, K. & Chess, B. (2012). Foundations in Microbiology (8th ed.). The McGraw-Hill Companies, Inc., New York.
- Tortora, Funke, and Case (2010) Microbiology, 10th edition, Brenjamin Cummings Inc., California.
- Patil U. K., Kulkarni, J. S., Chaudhari, A. B., &Chincholkar, S. B. (2016). Foundations in Microbiology, 9th edition, NiraliPrakashan, Pune
- Frobisher, M. Hinsdill, Crabtree, and Goodheart, (1974). Fundamentals of Microbiology, 9th edition, WB Saunder's Co., USA.
- Dubey, R. C., &Maheshwari, D. K. (2005). Text Book of Microbiology, S Chand and Co, New Delhi

FYBSc (Microbiology) Semester I

MIB-DSC-112: Practical course on Basic Microbiology

Total Hours: 60 Credits: 2

Course objectives	 To acquaint basic microbiological instruments and techniques To study various microorganisms present in the ecosystem 	
	To observe and learn the microbes using various staining techniques	
Course	To characterize the microbes using biochemical tests	
Outcomes	 After successful completion of this course, students are expected to: Understand the basic microbial practices, instruments, approprotective and emergency procedures Study the comparative characteristics of prokaryotes and eukaryotes Learn theory and practical skills in microscopy, staining procedure growth Comprehend the various methods for the identification of microorgan 	
Sr. No.	TopicParticular	Hours
1	Microbiology Good Laboratory Practices, laboratory rules and first aid.	4
2	To study the principle, working and application of instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter, Balance) used in the microbiology laboratory	4
3	Acquainting basic microbiology techniques I: Types of laboratory glassware, Cleaning and washing of Glassware, biosafety measures, disinfection of working table and hands, biological waste Disposal, Use of Microbial culture and its storage	4
4	Acquainting basic microbiology techniques II: Preparation of culture media for bacterial cultivation, Cotton Plugging, Wrapping the items prior to sterilization, sterilization with autoclave, Aseptic handling (LAF/ Bunsen burner), preparation of plates and slants, inoculation of bacterial culture and inoculating needle, labelling of incubation material, preservation.	4
5	Use and Care of Compound Microscope with functions of each part	4
6	 Study of microbes with using temporary mounts/ permanent slides Fungus e.g. Rhizopus/ Penicillium/ Aspergillus/ Fusarium Algae/BGA e.g. Spirogyra/ Anabena/ Nostoc/ Cyanobacteria Protozoans e.g.Amoeba/ Entamoeba/ Paramecium/ Plasmodium 	4
7	Study of colony characteristics of different bacteria (e.g. Escherichia coli, Staphylococcus aureus)	4
8	Study of motility of bacteria by hanging drop/ swarming growth	4
9	Microscopic observation of Rhizobacteria from root nodules /mycorrhizal spores from soil	4
10	Study of bacterial morphology using Monochrome Staining	4
11	Study of morphological features of bacteria using Negative Staining	4

12	Study of Gram characteristics of bacteria (Gram's Staining)	4
13	Study of acid-fast characteristics of bacteria (acid-fast staining)	4
14	Study the bacterial capsule using a suitable staining technique	4
15	Study the bacterial endospore using a suitable staining technique	4

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, W.M.T. Brown Publishers, Dubuque, USA.
- Cappucino, J & Sherman N.(2010) Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Delhi.
- Parija, S.C. (2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.
- Dubey, R. C & Maheshwari D. K. (2004). Practical Microbiology, 1st edition, S.Chand and Co., Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Co., NewYork.
- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, NewYork.
- Aneja, K.R.(1996), Experiments in Microbiology, 3rdedition, WishwaPrakashan, New Delhi.

FYBSc (Microbiology)

Semester I

MIB-OE-111: Health and Human Microbiome

Tota	al Hours: 30 Credits: 2	1
Course	To acquaint basic knowledge of human health and body defence	
objectives	To study a balanced diet and the concept of hygiene	
	To learn different systems of the human body	
	To get aware of microbes associated with human	
Course	After successful completion of this course, students are expected to:	
outcomes	Understand the importance of good health and immunity	
	Aware ofbalanced nutrition and the importance of hygiene	
	Get an understanding of different human systems and their functioning	
	Comprehend the microbes associated with human	
Unit	Topic particular	Hours
	Human Health	
	• Introduction to health and its determinants	
Unit I	• Immunity: the body's defence mechanism	7
	• Types of immunity	,
	• The cells and organs of the immune system	
	Concept of antigen and antibody	
	Balance nutrition and hygiene	
	Introduction to nutrition	
	• Types of nutrients – carbohydrates, fats, proteins, vitamins, minerals	
Unit II	Balanced diet, Optimum and good nutrition, malnutrition	7
	Concept of hygiene	,
	Personal, community and medical hygiene	
	Good practices for hygiene	
	The consequence of poor hygiene	
	Human Anatomy	
Unit III	General working knowledge of different anatomical systems/ parts of the	8
	body: Respiratory, Gastrointestinal, Central nervous system, Excretory	o o
	system, Reproductive system, Special senses – skin, eye, ear	
	Human Microbiome	
	Normal, resident and transient flora	
Unit IV	Concept of Pro and prebiotic	8
	The beneficial effect of normal flora	0
	Microflora of human body	
	Microorganisms and infection	

- Anantnarayan, P. &Paniker, C. K. J., (2009), Textbook of Microbiology 8thEd, Universities Press, Hyderabad.
- Atlas, R. M. (1995). Microorganisms in our world, Mosby Year Book Inc.
- Chakraborty, P. (2013). A text book of Microbiology, New Central Book, Agency, Delhi.
- Dey, N. C. &Dey, T. K., (1999) Medical Bacteriology and Microbiology, 16th Ed, Allied Agency, Calcutta.
- Prescott, L. M., Hartley, J. P. & Klein, D. A., (1993), Microbiology, 2nd Ed., W. M. C. Brown Publ, England.
- Tortora, G. J., Funke, B. R. & Case, C. L., (2004), Microbiology, 8thEd., Person Education (Low Price edition), Delhi.

F.Y.B.Sc. (Microbiology) Semester II

FYBSc (Microbiology) SemesterII MIB-DSC-121: Basic Techniques in Microbiology Credits: 2

Total Hours:30

Course	•	To acquaint students with basic concepts of microbial growth	
objectives	•	To get aware of interactions between microbes andthe environment	
	•	To illustrate the different methods of isolation and cultivation of microbes	
	•	To elucidate the methods to control microbes	
Course		After successful completion of this course, students are expected to:	
outcomes	•	Aware aspects of bacterial growth and reproduction	
	•	Learn various aspects of microbial environment adaptations and nutrient medium	
	•	Understand various methods to cultivate microbes	
	•	To relate control of microbes with an aseptic condition, disinfection and sterilization	n
Unit		Topic particular	Hours
	Ba	sics of Microbial Growth and Reproduction	
	-	Concept of growth and reproduction,	
	-	Mechanism of binary fission, fragmentation, budding	
	-	Mathematical expression for growth, growth rate and generation time	
Unit I		(Illustration with problem).	08
	•	Typical growth curve of bacterial population and its significance, Diauxic	
		growth	
	•	Synchronous and continuous growth culture with applications	
	7	Quantitative measurement of bacterial growth	
	M	icrobial growth and environmental factors, medium of growth	
	•	Physical parameters: effect of pH, temperature, water activity, oxygen on	
TT\$4 TT		growth and cultivation	07
Unit II	•	Types of bacteria, mode of their adaptations w.r.t.temperature, pH,	07
		Salt/solute and water activity, Oxygen requirement, Pressure.	
		Media ingredients and types of media Classification of bacteria based on nutrition: phototroph and chemotroph	
	Ter	olation and cultivation of Microbes	
	120	Enrichment methods for microbes	
	•	Pure culture technique for bacteria - Streak, Pour plate, Spread plate	
		Cultivation of anaerobes: roll tube method, anaerobic jar and anaerobic	
Unit III		cabinet/chamber	07
		Cultivation of fungi and blue-green algae	
		Cultivation of animal and plant viruses (living animals, embryonated eggs	
	<u>C</u>	and cell line cultures), Cultivation of bacteriophage	
		ontrol of microbes	
	•	Aseptic condition – necessity, methods (personal protection and aseptic	
		inoculation) and application	
	•	Concept of: antibiotics, antiseptic, sanitation, sanitizer, germicide,	
Unit IV		microbiocide, microbiostasis, fumigation.	08
	•	Concept of disinfectant and characters of an ideal disinfectant	
		 Mode of action and applications of phenolic compounds, alcohols, 	
		halogens, heavy metals compounds, dyes, detergents, quaternary	
		ammonium compounds, and H_2O_2 .	
	•	Concept of sterilization	

- O Physical methods: dry heat, moist heat and radiation
- o Chemical methods Ethylene oxide and formaldehyde
- o Sterilization by filtration: membrane filter, LAF (HEPA)
- Pasteurization concept and methods
- Control of microbes by low temperature, desiccation, osmotic pressure, surface tension

- Black, J. G. (2008). Microbiology: Principles and Explorations, 7th edition, Prentice Hall, New Jersey.
- Madigan, M. T. & Martinko, J. M. (2014). Brock Biology of Microorganisms, 14th edition, Parker J. Prentice Hall International, Inc., New Jersey.
- Stanier, R. Y, Ingraham, J. L, Wheelis, M. L. & Painter, P. R. (2005), General Microbiology, 5th edition, McMillan, London
- Salle, S. J. (1974). Fundamental Principals of Bacteriology, 2nd edition, Tata McGraw Hill Publishing Co.Ltd., New Delhi.
- Willey, J. M, Sherwood, L. M., &Woolverton, C. J. (2013) Prescott's Microbiology,9th edition, McGraw Hill Higher Education, New Delhi.
- Patil, U. K, Kulkarni, J. S, Chaudhari, A. B. &Chincholkar, S. B. (2016) Foundation in Microbiology,9th edition, NiraliPrakashan, Pune

FYBSc (Microbiology) SemesterII

MIB-DSC-122: Practical Course on Microbial Techniques

Total Hours:60 Credits: 2

	 To know the staining procedures for bacterial structures 		
objectives	• To learn the isolation and cultivation techniques for bacteria		
	To understand the microflora monitoring from air, water and soil		
	To validate the instruments and evaluate the disinfectant		
	After successful completion of this course, students are expected to:		
comes	Stain the bacterial structures using special staining techniques		
	• Use pure culture and selective techniques to enrich and isolate microorganisms.		
	Enumerate microflora from different ecological samples		
	Validate and evaluate instruments and disinfectant	1	
Sr. No.	TopicParticular	Hours	
1	Isolation of bacteria from enriched soil sample by streak plate technique	4	
2	Isolation of bacteria from a water sample by spread plate technique	4	
3	Determination of Colony Forming Unit (cfu) by pour plate method from soil/water sample	4	
4	Use of selective media for bacteria e.g. MacConkeys / EMB /SS agar	4	
5	Slide culture technique for fungi	4	
6	Study micro-flora of the air using settling velocity	4	
7	Effect of heavy metal (s) on the growth of bacteria and demonstration of oligodynamic action	4	
8	Biochemical characterization of bacteria using sugar fermentation (Mono and Di-saccharide)	4	
9	Biochemical characterization through IMViC test	4	
10	Biochemical characterization using H ₂ S fermentation	4	
11	Effect of temperature on the growth of bacteria	4	
12	Effect of pH on the growth of bacteria	4	
13	Evaluation of skin disinfectant (alcohol/soap/Dettol)for disinfection	4	
14	Preparation of standard solutions (Normal/ Molar/ Percentage)	4	
	Demonstration of bacterial growth by spectrophotometer		

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, W.M.T.Brown Publishers.
- Cappucino, J. & Sherman, N. (2010). Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Jersey.
- Parija, S. C. (2005). Text Book of Practical Microbiology,1st edition, Ahuja Publishing House, New Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Companies, London.
- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New Delhi.
- Aneja, K. R. (1996). Experiments in Microbiology, 3rd edition, WishwaPrakashan, NewDelhi.

FYBSc (Microbiology) SemesterII

MIB-OE-121Microbial diseases and control

Total Hou	rrs: 30 Cr	edits 02
Course	To know the concept of medical microbiology	
objectives	To study Bacterial and fungal diseases	
	To learn about viral and protozoal diseases	
	To make aware of control, prevention and treatment of diseases	
Course	After successful completion of this course, students are expected to:	
outcomes	Understand the fundamentals of medical microbiology	
	Know diseases concerning the few bacterial and fungal causative agents	
	Learn diseases concerning the few viral and protozoal causative agents.	
	Deduce the control, prevention and treatment of diseases	
Unit	Topic particular	Hours
	Concepts in medical microbiology	
	 Disease-causing agent 	
	 Types of diseases – Acquired (infections, noninfectious), congenital, 	
Unit I	 Infection: types, source and transmission 	7
Unit I	 Signs, symptoms and syndromes 	/
	 Microbial pathogenicity 	
	o Diagnosis	
	 Prevention and treatment 	
	Bacterial and fungal disease	
	Diseases concerning the causative agent, pathogenicity, lab diagnosis,	
	prevention and treatment	
Unit II	o Enteric fever	7
	o Pneumonia	
	o Dermatitis	
	o Candidiasis	
	Viral and protozoal disease	
	Diseases with respect to the causative agent, pathogenicity, lab diagnosis,	
	prevention and treatment	
Unit III	o COVID-19	8
	o Rabies	
	o Malaria	
	Amebic dysentery	
	Control, prevention and treatment	
Unit IV	 Vaccination – example and schedule 	
	 Examples of chemotherapeutic agents – drugs, toxoids, interferons 	8
	 Antimicrobial agents examples – antibacterial, antifungal, 	
	antiprotozoal	
	 Concept of Multiple drug resistance 	

- Anantnarayan, P., Paniker, C. K. J., (2009). Textbook of Microbiology 8thEd, Universities Press, Hyderabad.
- Atlas, R. M. (1995). Microorganisms in our world, Mosby Year Book Inc.
- Chakraborty, P. (2013). A textbook on microbiology, New Central Book, Agency, Delhi.
- Dey, N. C. &Dey, T. K., (1999). Medical Bacteriology and Microbiology, 16th Ed, Allied Agency, Calcutta.
- Prescott, L. M., Hartley, J. P. & Klein, D. A., (1993), Microbiology, 2nd Ed., W. M. C. Brown

- Publ, England.
- Tortora, G. J., Funke, B. R. and Case, C. L., (2004), Microbiology, 8thEd., Person Education (Low Price edition), Delhi.
- Dubey, R. C., &Maheshwari, D. K. (2005). Text Book of Microbiology, S Chand and Co, New Delhi.

FYBSc (Microbiology) Semester II

MIB-OE-122Practical course on Microbiology

Total Hours: 60 Credits 02

Course	• To acquaint basis misrabiological instruments and techniques		
objectives	To acquaint basic microbiological instruments and techniques To study various micropropagations present in the accounters.		
Ū	 To study various microorganisms present in the ecosystem To observe and learn the microbes using various staining techniques 		
	 To observe and rearrance incrobes using various standing techniques To characterize the microbes using biochemical tests 		
CourseOute			
omes	After successful completion of this course, students are expected to:		
	 Understand the basic microbial practices, instruments, appropriate protecti- and emergency procedures 		
	 Study the comparative characteristics of prokaryotes and eukaryotes 		
	Learn theory and practical skills in microscopy, staining procedure	es and	
	growth		
	 Comprehend the various methods for the identification of microorganism 	ns	
Sr. No.	TopicParticular	Hours	
1	Microbiology Good Laboratory Practices, laboratory rules and first aid.	4	
2	To study the principle, working and application of instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter, Balance) used in the microbiology laboratory	4	
3	Acquainting basic microbiology techniques I: Types of laboratory glassware, Cleaning and washing of Glassware, biosafety measures, disinfection of working table and hands, biological waste Disposal, Use of Microbial culture and its storage	4	
4	Acquainting basic microbiology techniques II: Preparation of culture media for bacterial cultivation, Cotton Plugging, Wrapping the items prior to sterilization, sterilization with autoclave, Aseptic handling (LAF/ Bunsen burner), preparation of plates and slants, inoculation of bacterial culture and inoculating needle, labelling of incubation material, preservation.	4	
5	Use and Care of Compound Microscope with functions of each part	4	
6	 Study of microbes with using temporary mounts/ permanent slides Fungus e.g. Rhizopus/ Penicillium/ Aspergillus/ Fusarium Algae/BGA e.g. Spirogyra/ Anabena/ Nostoc/ Cyanobacteria Protozoans e.g.Amoeba/ Entamoeba/ Paramecium/ Plasmodium 	4	
7	Study of colony characteristics of different bacteria (e.g. <i>Escherichia coli</i> , <i>Staphylococcus aureus</i>)	4	
8	Study of motility of bacteria by hanging drop/ swarming growth	4	
9	Microscopic observation of Rhizobacteria from root nodules /mycorrhizal spores from soil	4	
10	Study of bacterial morphology using Monochrome Staining	4	
11	Study of morphological features of bacteria using Negative Staining	4	

12	Study of Gram characteristics of bacteria (Gram's Staining)	4
13	Isolation of bacteria from enriched soil sample by streak plate technique	4
14	Isolation of bacteria from a water sample by spread plate technique	4
15	Study micro-flora of the air using settling velocity	4

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, W.M.T. Brown Publishers, Dubuque, USA.
- Cappucino, J & Sherman N.(2010) Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Delhi.
- Parija, S.C. (2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.
- Dubey, R. C & Maheshwari D. K. (2004). Practical Microbiology, 1st edition, S.Chand and Co., Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Co., NewYork.
- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, NewYork.
- Aneja, K.R.(1996), Experiments in Microbiology, 3rdedition, WishwaPrakashan, New Delhi.