K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी -'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date:- 01/08/2024

NOTIFICATION

Sub: - CBCS Syllabi of M. Sc. in Zoology (Sem. III & IV)

Ref.:- Decision of the Academic Council at its meeting held on 27/07/2024.

The Syllabi of M. Sc. in Zoology (Third and Fourth Semesters) as per **NATIONAL EDUCATION POLICY – 2020 (2023 Pattern)** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2024-25.

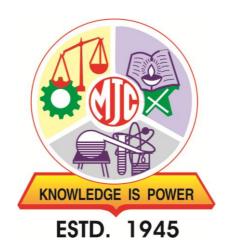
Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies

To:

- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

1)


Knowledge is Power

Khandesh College Education Society's

Moolji Jaitha College, Jalgaon

An "Autonomous College"

Affiliated to
KavayitriBahinabaiChaudhari
North Maharashtra University, Jalgaon-425001

STRUCTURE AND SYLLABUS

M.Sc. II Zoology

Under Choice Based Credit System (CBCS) and as per NEP-2020 Guidelines

[w.e.f. AcademicYear:2024-25]

Preface

Skilled human resource is a prerequisite in higher education, and it is to be acquired through thorough knowledge of theoretical concepts and hands-on laboratory methods of the subject. The MooljiJaitha College (Autonomous) has adopted a department-specific model as per the guidelines of UGC, NEP-2020 and the Government of Maharashtra. The Board of Studies in Zoology and Biotechnology of the college has prepared the syllabus for the first-year postgraduate of Zoology. The syllabus cultivates theoretical and practical know-how of different fields of Zoology. The contents of the syllabus have been prepared to accommodate the fundamental aspects of various disciplines of Zoology and to build the foundation for various applied sectors of Zoology. Besides this, in the first-year postgraduate, the students will be enlightened with the skill related to Phylogeny, systematics identification of Invertebrates and Chordates species with advanced tools and techniques testing, which will enhance students' employability.

The overall curriculum of three / four-year covers general Zoology, taxonomy, animal physiology, quantitative biology, animal ecology, biophysics, tools and techniques in biology, Skills in Scientific Communication and Writing report, and parasitology of various branches of Zoology. Zoology is a branch of Basic Sciences that studies all aspects of animal biology. It includes a wide range of fascinating, extremely varied themes. The advancements of biological sciences necessitates that students of zoology become masters in a variety of related fields. Furthermore, the syllabus is structured to cater to Zoology's present and future needs in the research field, Industrial Sector, Environmental Sector, Entrepreneurship etc., emphasizing imparting hands-on skills. Hence, the curriculum is endowed with more experiments that shall run hand-in-hand with theory. The detailed syllabus of each paper is appended with a list of suggested readings.

Program Outcomes (PO) for M.Sc. Program:

Upon successful completion of the M.Sc. program, student will be able to:

PO No.	PO
1	Student possess an in-depth understanding of advanced theories, concepts, and methodologies
	in their specific field of study.
2	Student should demonstrate advanced technical skills and proficiency in utilizing specialized
	equipment, software, and methodologies relevant to their field of study.
3	Student should be capable of critically analyzing complex problems and synthesizing
	information from various sources.
4	Student should be proficient in effectively communicating scientific information to both
	technical and non-technical audiences. They should be able to present their experimental
	findings through oral presentations, scientific writing, and the use of appropriate visual aids.
5	Student should demonstrate leadership qualities and the ability to work effectively as part of a
	team.
6	Student should have developed advanced research skills and the ability to independently design
	and conduct rigorous scientific investigations. They should be able to analyze scientific
	literature, formulate research questions, develop research plans, collect and analyze data, draw
	valid conclusions and know about IPR.
7	Student should understand and adhere to ethical principles and professional standards in their
	field.

8 Student should recognize the importance of continuous learning and professional development. They should have the skills and motivation to stay updated with advancements in their field, engage in lifelong learning, and pursue further academic or professional opportunities.

Program Specific Outcome PSO (M.Sc. Zoology):

After completion of this course, students are expected to learn/understand the:

PO No.	PSO
1	Understanding Invertebrate Biology and Physiology: Students will acquire comprehensive
	knowledge of the classification, structure, and function of invertebrates, including their
	physiological processes related to locomotion, digestion, respiration, and the comparative
	physiology of excretion and circulation. This will include the ability to interpret evolutionary
	origins and phylogenetic relationships among invertebrate phyla. And gain the skill about all
	these from the hands-on experiments through practical.
2	Application of Ecological and Biostatistical Principles: Students will develop proficiency
	in ecological concepts, including the interaction between environment and biota, population
	dynamics, and the impacts of human activities on ecological systems. Additionally, they will
	gain expertise in biostatistics, including data management, statistical analysis, and the ethical
	considerations involved in research, enabling them to critically evaluate scientific studies and
	effectively communicate statistical findings. Also Know the molecular events, understand the
	membrane deformations, get knowledge about electron transport, knowledge about electrical
	properties of membranes and lipid membrane technology. And gain the skill about all these
	from the hands-on experiments through practical.
3	Understanding Vertebrate Evolution and Anatomy: Students will gain knowledge of the
	evolutionary processes that led to the development of chordates from protochordates,
	including the phylogenetic evolution of vertebrates. This outcome encompasses
	understanding the anatomical changes related to vertebrate evolution, such as the origin of
	jaws and their functional significance in feeding strategies and ecological adaptation.
	Understanding biological development, gametes, process of fertilization,morphogenesis and
	organogenesis, placenta and programmed cell death. And gain the skill about all these from
	the hands-on experiments through practical.
4	Application of Biological Research Techniques and Communication Skills: Students will
	develop proficiency in various biological research techniques, including the use of advanced
	instrumentation and separation techniques in biology. Additionally, they will acquire skills in
	scientific communication, including the ability to prepare and present research findings
	effectively through visual aids, written reports, and oral presentations. Understand diversity of
	parasites, the identification and diagnosis of parasites, the pathogenesis of parasitic infections,
	the epidemiology of parasitic diseases, including their geographic distribution, transmission
	patterns, and risk factors. And gain the skill about all these from the hands-on experiments
	through practical.
5	Understanding Reproductive Biology and Genetics: Students will develop a
	comprehensive understanding of the reproductive systems of different species, including the
	anatomy, physiology, and hormonal regulation of male and female reproductive cycles. They
	will also gain knowledge in genetic principles, such as Mendelian inheritance, gene
	expression, and the genetic basis of reproductive traits, enabling them to analyze genetic data
	and diagnose genetic disorders. Compare and contrast DNA replication, transcription, and
	translation processes. Analyze the impact of mutations in genes involved in these processes.
	Discuss the importance of gene regulation in cellular function and development. Explain the

	mechanisms by which drugs can target specific steps in gene expression. And gain the skill
	about all these from the hands-on experiments through practical.
6	Fossil Analysis and Wildlife Conservation: Students will learn to critically evaluate fossil
	evidence to interpret the geological history of Earth, classify fossils, and understand past
	animal distribution patterns. Additionally, they will develop skills in wildlife conservation,
	including conducting independent wildlife surveys, analyzing data on wildlife abundance and
	diversity, and creating management plans for the conservation of protected areas and
	threatened species, while understanding the ethical and legal aspects of wildlife management.
	And gain the skill about all these from the hands-on experiments through practical.
7	Mastery of Nervous System and Sensory Function: Students will gain practical skills and a deep understanding of the nervous system's functionality, including nerve impulse conduction, sensory coding mechanisms, and receptor functions. They will be able to conduct and interpret sensory tests, applying these skills in clinical and research settings, and will comprehend the cellular mechanisms of hormone action, enhancing their knowledge of the hypothalamo-hypophyseal system and other hormonal pathways. Analyze the potential hazards of various chemicals in our environment, dose-response relationships in assessing toxicity, assess the safety of new chemicals and drugs, by which toxicants enter the body, distribute to different organs, and exert their harmful effects. And gain the skill about all these
	from the hands-on experiments through practical.
8	Proficiency in Histological and Forensic Techniques: Students will demonstrate
	proficiency in histological techniques, including selecting appropriate microtome types,
	preparing tissue samples for microscopic examination, and performing specific staining and
	histochemical procedures. Additionally, they will acquire skills in forensic science, such as collecting, preserving, and analyzing biological evidence, interpreting forensic analyses to
	assist in investigations, and understanding the importance of maintaining the chain of custody
	in criminal investigations. And gain the skill about all these from the hands-on experiments
	through practical.
	unough practical.

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree depending upon the number of credits secured;

Levels	Qualification Title	Credit Requ	Credit Requirements		Year
		Minimum	Maximum		
6.0	One-year PG Diploma program	40	44	2	1
	after 3 Yr Degree				
6.5	Two-year master's Degree program	80	88	4	2
	After 3-Yr UG				
	Or PG Degree after 4- Yr UG				

Credit distribution structure for two years/one-year PG MSc programme

Level	Sem	Sem Major (Core)		Minor	OJT/Int, RP	Cumulative	Degree/
		Mandatory	Elective	Subjects		Credits/Sem	Cumulative
		(DSC)	(DSE)				Cr.
		DSC-1 (4T)	DSE-1(2T)	RM (4T)		22	First-year PG
	I	DSC-2 (4T)	A/B				OR
	1	DSC-3 (4T)	DSE-2(2P)				One year PG
		DSC-4 (2P)	A/B				diploma after
6.0		DSC-5 (4T)	DSE-3(2T)		OJT/Int (4)	22	3 years UG
	п	DSC-6 (4T)	A/B				
	111	DSC-7 (4T)	DSE-4(2P)				
		DSC-8 (2P)	A/B				
	Cum. Cr.	28	8	4	4	44	
		Exit option: PG	diploma (44 C	redits) after th	ree-year UG deg	ree	
		DSC-9 (4T)	DSE-5(2T)			22	Second-year PG
	III	DSC-10 (4T)	A/B		DD (4)		after 3 years UG
	1111	DSC-11 (4T)	DSE-6(2P)		RP (4)		OR
		DSC-12 (2P)	A/B				PG degree after 4
6.5		DSC-13 (4T)	DSE-7(2T)			22	years UG
	IV	DSC-14 (4T)	A/B		DD (6)		
	1 1 1	DSC-15 (2P)	DSE-8 (2P)	•••	RP (6)		
		DSC-16 (2P)	A/B				
	Cum. Cr.	54	16		4+10	88	
2 Years-4 Sem. PG Degree (80-88 credits) after Three Year UG Degree							
		or 1 Year-2 Sem	PG Degree (4	0-44 credits) a	after Four Year U	JG Degree	

Sem- Semester, DSC- Department Specific Course, DSE- Department Specific Elective, T- Theory, P- Practical,

RM- Research Methodology, OJT- On Job Training, Int- Internship, RP- Research Project,

Cum. Cr.: Cumulative Credits

Examination Pattern for MSc

Theory Question Paper Pattern:

- 60 (External) +40 (Internal) for 4 credits
 - o External examination will be of three hours duration
 - There shall be 5 questions, each carrying equal marks (12 marks each), while the tentative pattern of question papers shall be as follows;
 - o Q1 Attempt any 3 out of 4 sub-questions; each 4 marks
 - o Q 2, Q3, Q4 and Q5 Attempt any 2 out of 3 sub-question; each 6 marks.
- 30 (External) +20 (Internal) for 2 credits
 - External examination will be of 1½ hours duration
 - There shall be 3 questions Q1 carrying 6 marks and Q2, Q3 carrying 12 marks each, while the tentative pattern of question papers shall be as follows;
 - o Q1 Attempt any 2 out of 3 sub-questions; each 3 marks
 - o Q 2 and Q3 Attempt any 2 out of 3 sub-question; each 6 marks.

Rules of Continuous Internal Evaluation:

The Continuous Internal Evaluation for theory papers shall consist of two methods:

- **1. Continuous and Comprehensive Evaluation (CCE):** CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:
 - i. Individual Assignments
 - ii. Seminars/Classroom Presentations/Quizzes

- iii. Group Discussions/Class Discussion/Group Assignments
- iv. Case studies/Case lets
- v. Participatory and Industry-Integrated Learning/Field visits
- vi. Practical activities/Problem Solving Exercises
- vii. Participation in Seminars/Academic Events/Symposia, etc.
- viii. Mini Projects/Capstone Projects
- ix. Book review/Article review/Article preparation
- x. Any other academic activity
- xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that three units of the syllabus are mapped to the CCEs.
- **2. Internal Assessment Tests (IAT):** IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher can decide which units will be assessed using CCEs and which unit will be assessed based on IAT.

The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations.

The subject teachers must communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Practical Examination Credit 2: Pattern (30+20) External Practical Examination (30 marks):

- Practical examination shall be conducted by the respective department at the end of the semester.
- Practical examination will be of 3 hours and shall be conducted as scheduled.
- There shall be 05 marks for journal and viva voce. A certified journal is compulsory to appear for practical examination.
- The practical examination will be of a minimum of 3 hours duration and shall be conducted as per schedule for 2 consecutive days in case of practical where incubation conditions and allied aspects are essential.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by the department as per the schedule given.
- For internal practical examination, students must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and department head.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities the faculty assigns during regular practicals. For details, refer to internal theory examination guidelines.
- Finally, 40 (10+30) students' performance will be converted into 20 marks.

S. Y. M. Sc. Zoology Course Structure

Semester	Course	Credit	Hours/	TH/	Code	Title
	Module		week	PR		
	DSC	4	4	TH	ZOO-DSC-611	Animal Physiology I
	DSC	4	4	TH	ZOO-DSC-612	Palaeontology
	DSC	4	4	TH	ZOO-DSC-613	Inheritance Biology
	DSE	2	2	TH	ZOO-DSE-614(A)	Molecular Biology
	DSE	2	2	TH	ZOO-DSE-614(B)	Wildlife and Conservation Biology
III	DSC	2	4	PR	ZOO-DSC-615	Practical based on ZOO-DSC-611, 612 and 613
	DSE	2	4	PR	ZOO-DSE-616(A)	Practical on Molecular Biology
	DSE	2	4	PR	ZOO-DSE-616(B)	Practical onWildlifeand Conservation
						Biology
	DSC	4	8	RP	ZOO-RP-617	Research Project I
	DSC	4	4	TH	ZOO-DSC-621	Animal Physiology II
	DSC	4	4	TH	ZOO-DSC-622	Histology and Histochemistry
	DSE	2	2	TH	ZOO-DSE-623(A)	Forensic Science
IV	DSE	2	2	TH	ZOO-DSE-623(B)	Toxicology
1 V	DSC	2	4	PR	ZOO-DSC-624	Practical on Animal Physiology II
	DSC	2	4	PR	ZOO-DSC-625	Practical on Histology and
						Histochemistry
	DSE	2	4	PR	ZOO-DSE-626(A)	Practical on Forensic Science
	DSE	2	4	PR	ZOO-DSE-626(B)	Practical on Toxicology
	DSC	6	12	RP	ZOO-RP-627	Research Project II

DSC :Department-Specific Core course, DSE :Department-Specific elective, TH:Theory, PR: Practical

MSc II (Zoology) Semester III ZOO-DSC-611: Animal Physiology I

Total Hours: 60 Credits: 4

Course	To comprehend the structure and function of the male and female repro-	ductive
Objectives	systems.	
	 To explain the process of spermatogenesis and oogenesis. 	
	 To distinguish between the female reproductive cycles of different mamn 	nals.
	• To analyze the influence of hormones on the development and function	n of the
	reproductive system, puberty, and menopause.	
Course	After successful completion of this course, students are expected to:	
Outcomes		nd their
	histological features of the male and female.	
	 Analyze the sperm maturation and storage, and egg cell development. 	
	 Distinguish between the female reproductive cycles (estrous and me 	nstrual)
	across different species.	
	 Explain the roles and mechanisms of action of key sex hormones. 	
Unit	Topic	Hours
	Introduction and Scope of Reproductive Physiology.	
	Male Reproductive system sexual organsand Accessory glands- Testes,	
I	secondary or accessory organs- Ducts, Rete testis, Vasa-efferentia,	15
_	Epididymis, Vasa differentia and Ejaculatory duct, and Penis. Accessory	10
	glands- Seminal vesicle, Prostate gland, Cowper's gland. Spermatogenesis.	
	Female Reproductive system sexual organs and Accessory glands -	
II	Ovaries, Fallopian tube, Uterus, Vagina. Accessory glands - Mammary	15
11	glands, Bartholin's glands, Skene's glands, Uterine glands. Oogenesis.	13
	Reproductive cycle in Female, Copulation and Fertilization:	
	Estrous cycle, Menstrual cycle, Hormonal and Neural control of Menstrual	
III	cycle	15
	Ejaculation, insemination, gamete transport – Sperm and Ova, sperm	
	capacitation and activiation, entry of sperm in to the ovum, acrosomal	
	reaction, activation of sperm, amphimixis.	
	Reproductive health	
	Puberty and delayed puberty, Menarche and Menopause, Hormonal control	
IV	of Spermatogenesis and Oogenesis. Chemistry, biosynthesis, Mode of	15
_ ,	action and function of sex hormones Androgen, Estrogen and Progesterone.	10
	Remedies of population control, Reproductive health care programme,	
	Sterility, IVF	
Study	• Hogarth, P. J. (1978). Biology of reproduction. Wiley. New York, NY.	
Resources		inburgh,
	Scotland.	
	• Austin, C. R., and Short, R. V. (1972). Reproduction in mammals (Vol.	ls. 1-8).
	Cambridge University Press. Cambridge, England.	
	• Williams, R. H. (1981). Textbook of endocrinology. W. B. Saunders Co	ompany.
	Philadelphia, PA.	
	• Chatterjee, C. C. (1985). Human physiology (Vol. II, 10 th ed.). Medical Allied	Agency.
	Calcutta, India.	
	• Nagabhushanam, R. (2003). Textbook of animal physiology (2nd ed.). Oxf	ford and
	IBH Publishing Co. Pvt. Ltd. New Delhi, India.	

MSc II (Zoology) Semester III ZOO-DSC-612: Palaeontology

Total Hours: 60 Credits: 4

10tal F	lours: 60 Credits: 4	
Course Objectives	• To define fossils, explain the process of fossilization, and identify different type fossil evidence.	es of
	• To describe the principles of radiometric dating, including Uranium-Lead and C 14 methods, and apply them to determine the age of rocks and fossils.	'arbon-
	• To differentiate between unaltered and altered fossils, and recognize various typ	es like
	actual remains, petrified fossils, and coprolites.	
	• To explain the importance of fossils in understanding the geological time scale, a	animal
C	distribution patterns, and past environments.	
Course	After successful completion of this course, students are expected to:	
Outcomes	• Critically evaluate fossil evidence for past life forms.	
	• Interpret the geological history of Earth using radiometric dating techniques.	
	• Analyze and classify different fossil types based on their preservation.	
	• Utilize fossils to understand past animal distribution patterns and their evol significance.	lunonar
Unit	Topic	Hours
Cint	Palaeontology	Hours
	a)Fossils-Definition, process of fossilization and evidences, b)Determination of age	
	of rocks and fossils (radiometric dating). i)Uranium-Lead method, ii)Radioactive	
	carbon method	4 =
I	c)Natureoffossils-unalteredandalteredfossils d)Types of fossils-i)	15
	Actualremains, ii)Petrified fossils,iii)Moultsandcasts,iv)Footprints	
	andtrailsv)Coprolites	
	e)Significanceoffossils	
	Oparian-Haldanetheoryoforiginof life:	
	a)Miller-Urey'sexpt. b)Co-acervates	
II	Origin of vertebrates and major steps in vertebrate evolution. Mesozoic reptiles	15
	with special reference to origin diversity and extinction of dinosaurs. Mass	
	extinction (Causes, five major extinctions, K-T extinction in detail), Role of extinction in evolution; Evolution of Horse, Phylogeny of Man.	
	Geological time scale and distribution of animals	
	Geological time scale Geological time scale	
III	a)Meansof dispersalof animals, b)Barriersof dispersal(Physicaland,climaticand	15
	biological), c)Distribution of animals (continuous and discontinuous),	
	d)Bathymetricdistribution(Geobiotic,limnobioticand holobiotic)	
	Zoogeographicalrealm a)Definitionandtypes	
IV	a)Studyoffollowingrealmswiththeir distinctive	15
1 V	animalDistributioni)Palaearcticregion ii)Nearticregion iii)Neotropicalregion	13
	iv)Ethiopianregion, v)Orientalregion vi)Australianregion c) Wallace'sline	
Study	• Barnes, C.W.1988. Earth, Timeand Life. John Wileyand Sons, New York (Module 2,	*
Resources	• Bendall, D.S. (ed.) 1983. Evolution from Molecules to Man. Cambridge University P.	ress,
	UK(Module2,3and5)	
	• BullJ. JandH. A. Wichman. 2001. Applied Evolution. Rev. Ecol. Syst.	
	• ChattopadhyaySajib.2002. LifeOrigin,EvolutionandAdaptation.BooksandA	Allied(P)
	Ltd.Kolkata,India.	

MSc II (Zoology) Semester III ZOO-DSC-613: Inheritance Biology

Total Hours:60 Credits: 4

Total Hour	s:60 Credit	s: 4			
Course	• To explain the core concepts of Mendelian inheritance.				
Objectives	To differentiate between alleles (including multiple alleles and pseudoalleles)				
	To describe and analyze deviations from simple Mendelian inheritance				
	patterns.				
	 To explain complex genetic concepts. 				
Course	After successful completion of this course, students are expected to:				
Outcomes	1				
Sucomes	 Interpret genetic data and diagnose simple genetic disorders. 	•			
		prossion and			
	Critically analyze the influence of various factors on gene expression and inheritance patterns.				
	*	ritanaa			
TT *4	Discuss the complexities of human genetics and quantitative inherence. Thereign				
Unit	Topic	Hours			
	Mendeliesm and its extensions				
	Mendelian principles: Dominance, segregation, independent				
	assortment. Concept of gene : Allele, multiple alleles, pseudoallele,	1.5			
	complementation tests, Extensions of Mendelian principles:	15			
	incomplete dominance, codominance, pleiotropy, genomic				
	imprinting, penetrance and expressivity, phenocopy, linkage and				
	crossing over, sex linkage, sex limited and sex influenced characters.				
	Gene mapping, extra chormosomal inheritance and microbial				
	genetics				
	Gene mapping methods: Linkage maps, tetrad analysis, mapping				
	with molecular markers, mapping by using somatic cell hybrids,	1.5			
	development of mapping population in plants.	15			
	Extra chromosomal inheritance : Inheritance of Mitochondrial and				
	chloroplast genes, maternal inheritance.				
	Microbial genetics: Methods of genetic transfers – transformation,				
	conjugation, transduction and sex-duction				
	Human and qualitative genetics				
	Human genetics: Pedigree analysis, lod score for linkage testing,	15			
	karyotypes, genetic disorders. Quantitative genetics: Polygenic				
	inheritance, heritability and its measurements, QTL mapping				
	Genetic variation				
	Mutation causes of mutant: types – lethal, conditional, biochemical,				
	loss of function, gain of function, germinal verses somatic mutants,	1.5			
	insertional mutagenesis. Structural and numerical alterations of	15			
	chromosomes: Deletion, duplication, inversion, translocation, ploidy				
	and their genetic implications. Recombination: Homologous and				
	non-homologous recombination including transposition.	Mumbai			
Study	 C.B. Pawar, (2018), Genetics Vol I and II, Himalaya Publishing House, M.W.Stricberger, (1984), Genetics, 4th Edition, MacMillan public Com 	Mumbai			
Resources	M.W.Stricberger, (1984), Genetics, 4 th Edition, MacMillan public Com York	. IIIC, NEW			
	• B. Lewin, (2009), Genes X th edition, Wiley Eastern Limited, New Delh	i			
	• R. L. Kotpal, (2020), Concept of Genetics, 6 th Edition, Rastogi Publicat				
<u> </u>	1. 2. Rotpus, (2020), Concept of Genetics, C. Euthon, Rustogi I utilicat	1011, 111001 UL.			

MSc II (Zoology) Semester III ZOO-DSE-614(A): Molecular Biology

Total Hours: 30 Credits: 2

Total	Hours: 30 Credits: 2	
Course	To explain the mechanisms of DNA replication.	
Objectives	To describe the process of transcription.	
	To analyze the process of translation.	
	• To explain how gene expression is regulated at the transcription as	nd
	translation levels in phages.	
Course	After successful completion of this course, students are expected to:	
Outcomes	Compare and contrast DNA replication, transcription, and translation pro-	cesses.
	Analyze the impact of mutations in genes involved in these processes.	
	Discuss the importance of gene regulation in cellular function and develor	pment.
	• Explain the mechanisms by which drugs can target specific steps in	_
	expression.	
T1:4	Tomic	Hour
Unit	Торіс	S
	DNA replication, repair: Unit of replication, enzymes involved, replication	
	origin and replication fork, fidelity of replication, extrachromosomal	8
	replicons, DNA damage and repair mechanisms.	
	RNA synthesis and processing: transcription factors and machinery,	
	formation of initiation complex, transcription activator and repressor, RNA	
II	polymerases, capping, elongation, and termination, RNA processing, RNA	7
	editing, splicing, and polyadenylation, structure and function of different	
	types of RNA, RNA transport.	
	Protein synthesis and processing: Ribosome, formation of initiation	
III	complex, initiation factors and their regulation, elongation and elongation	8
1111	factors, termination, genetic code, aminoacylation of tRNA, tRNA-identity, aminoacyl tRNAsynthetase, and translational proof-reading, translational	0
	inhibitors, Post- translational modification of proteins.	
	Control of gene expression at transcription and translation level:	
IV	regulating the expression of phages, viruses, prokaryotic and eukaryotic	7
1	genes, role of chromatin in gene expression and gene silencing.	,
Study	• Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of G	enetics
Resources		Circuics
	• Powar, C.B. (2002). Genetics Vol I and II, Himalaya Publishing	House.
	Mumbai	,
	• Stricberger, M.W. (2010). Genetics, 4th Edition, macMillon public Co.	m. Inc.
	New York	- 1
	• Lewin B. (2010). Genes Xth edition, Wiley Eastern Limited, New Delhi	
	• Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics, V Edition	n. John
	Wiley and Sons Inc	, , , , , , , ,
	• Gupta P.K. (2003). Cell and Molecular Biology.,Rastogi Publications.	
L	(), min 1.1	

ZOO-DSE-614(B): Wildlife and Conservation Biology

Total Hours: 30 Credits:2 To analyze the rich biodiversity of India. Course **Objectives** To critically evaluate current wildlife conservation approaches. To define and differentiate between National Parks, Sanctuaries, Biosphere Reserves, Community Reserves, and Conservation Reserves. To utilize the Red Data Book and understand conservation statuses. After successful completion of this course, students are expected to: Course Outcomes Propose solutions and advocate for improved wildlife conservation practices. Develop management plans for specific protected areas or threatened species. Critically analyze the effectiveness of national and international wildlife conservation efforts. Discuss the ethical considerations and legal framework surrounding wildlife management in India. Unit **Topic** Hours I Wildlife in India - Wildlife wealth of India and threatened wildlife. Reasons for wildlife depletion in India. Wildlife conservation approaches and limitations. 8 National and State mammals and birds of India. Protected Area concept: National Parks, Sanctuaries and Biosphere Reserves - cores and buffers, Nodes and corridors. Community Reserve and conservation Reserves. П Management of Wildlife - Red Data Book and Conservation status (endangered, vulnerable, rare, threatened and near threatened species) definitions. 7 Distribution, status, habitat utilization pattern, threats to survival of Slender Loris, Musk deer, Great Indian Bustard, Olive Ridley turtle. Wildlife Trade and legislation - Assessment, documentation, Prevention of trade. Policies and laws in Wildlife management (national) and ethics. III Biodiversity extinction and conservation approaches - Perspectives and Expressions. Identification and prioritization of ecologically sensitive area (ESA). 8 Coarse filter and fine filter approaches. Regional and National approaches for biodiversity conservation. IVNational and International efforts for conservation - Information on CITES, IUCN, CBD International agreements for conserving marine life. 7 Convention on wetlands of International Importance (Ramsar convention). Important projects for the conservation of endangered species in India. Conservation of Natural Resources - Resources: Types and Degradations.

M.Kato. The Biology of Biodiversity, Springer.

E.O. Wilson. Biodiversity, Academic Press, Washington.

and Hall, New York.

J.C. Avise. Molecular Markers, Natural History and Evolution, Chapman

B.K. Tikadar. Threatened Animals of India, ZSI Publication, Calcutta.

Study

Resources

ZOO-DSC-615: Practicals on ZOO-DSC-611, 612 and 613

Total Hou	rs:60 C	redits: 2
Course	• To understand the physiological and biochemical aspects of rep	roductive
Objectives	cycles, pregnancy, and sperm count in humans and animals.	
	To gain knowledge in various contraceptive methods.	
	To explore fundamental concepts in evolutionary biology.	
	To develop skills in genetic analysis.	
Course	After successful completion of this course, students are expected to:	
Outcomes	<u> </u>	of
	reproductive cycles, pregnancy, and sperm count in humans and	
	• Explain different types of contraceptives and their usage.	
	Identify and describe fossils, zoogeographical realms, geological	ıl time
	scales, and stages of human evolution.	
	Train in genetic analysis.	
Sr. No.	Practical	Hours
1	Study of oestrus cycle.	4
2	Determination of pregnancy test. (E)	4
3	Estimation of glycogen from ovary / testis by Anthron method. (E)	4
4	Estimation of Sperm count. (E)	4
5	Study of types of contraceptives	4
6	Studyoffossils.	4
7	Study of Lamarkismusetheory-ex.Giraffe and	4
	Naturalselectiontheory-Darwinfinches	
8	Identificationofzoogeographicalrealmsusingmap.	4
9	Studyofgeologicaltimescale	4
10	Identification/featuresofstagesofHuman evolution –	4
	Australopithecus, Pithecanthropus, Neanderthal man and	
	Cromagnon man	
11	Calculate gene frequency of PTC (Phenylthiocarbamide) taster in	4
	the given human population. (E)	
12	Study of Sex linked character in Drosophila-White, and Bar Eye	4
13	Calculation of gene frequency of ABO blood group in human	4
	population. (E)	
14	Study of human traits – widow'speak, ear lobes, dimple cheek,	4
	rolled tongue. (E)	_
15	Study of Barr body in human buccal epithelium. (E)	4
Study	• Gardner, E. J., Simmons, M. J., Snustad, D. P. (2008). Prin	ciples of
Resources	Genetics.VIII Edition. Wiley India.	
	• Snustad, D. P., Simmons, M. J. (2009). Principles of Ger	netics. V
	Edition. John Wiley and Sons Inc.	
	• Klug, W. S., Cummings, M. R., Spencer, C. A. (2012). Con	ncepts of
	Genetics. X Edition. Benjamin Cummings.	
	• Russell, P.J. (2009). Genetics- A Molecular Approach. III	Edition.
	Benjamin Cummings.	_
	Abbas, K. Abuland Lechtman H. Andrew (2003.) Cellular and Molec	ularIm
	munology. V Edition. SaundersPublication.	

ZOO-DSE-616(A): Practical on Molecular Biology

Total Hours: 60 Course To apply various methods for estimating the concentration of DNA, RNA, and **Objectives** protein in biological samples. To isolate DNA and protein using techniques like agarose gel electrophoresis and chromatography. To utilize techniques like SDS-PAGE and isoelectric point determination to analyze protein structure and function. To perform and interpret results from advanced techniques like DNA amplification, thermal melting analysis, and diagnostic tests like ELISA. After successful completion of this course, students are expected to: Course Outcomes • Accurately estimate DNA, RNA, and protein. Successfully isolate DNA and protein. Interpret data from protein analysis techniques to understand protein structure and function. Gain knowledge about advanced techniques like DNA amplification, thermal melting analysis, and diagnostic tests like ELISA. **Practical** Unit Hours Estimation of DNA in a given sample by Diphenylamine Method. (E) 1. 4 4 2. Estimation of RNA in a given sample by Orcinol method. (E) 3. Estimation of Protein by any suitable method. (E) 4 4. Isolation of crude DNA from suitable material. (E) 4 5. Demonstration of Agarose gel electrophoresis for DNA. (E) 4 4 6. Demonstration of SDS page electrophoresis for protein. (D) 7. Isolation of protein by using acetone precipitation. (E) 4 Determination of isoelectric point of amino acid (pKa). (E) 4 8. Determination of λmax for Protein. (E) 4 9. 4 10. Paper chromatography for amino acid. (E) 4 11. Qualitative test for HCG. (E) To learn DOT-ELISA technique for detection of an Antigen. (E) 4 12. Demonstration of Amplification of DNA. (E) 4 13. Isolation of cellular components using cellular density gradient 14. 4 centrifugation. (E) 15. Determination of thermal melting of DNA. (E) Study • Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of Genetics Resources VIII ed.. Wiley India. • Powar, C.B. (2002). Genetics Vol I and II, Himalaya Publishing House, Mumbai • Stricberger, M.W. (2010). Genetics, 4th Edition, macMillon public Com. Inc. New York • Lewin B. (2010). Genes Xth edition, Wiley Eastern Limited, New Delhi • Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics, V Edition. John Wiley and Sons Inc.

• Gupta P.K. (2003). Cell and Molecular Biology., Rastogi Publications.

ZOO-DSE-616(B): Practical on Wildlife and Conservation Biology Total Hours: 60Credits: 2

Course Objectives	• To distinguish and identify various mammal, bird, and reptile species in the field.					
Objectives	To demonstrate proper use, care, and maintenance of essential wildlife study					
	tools like compasses, binoculars, GPS units, and cameras.					
	• To identify and analyze animal evidence like tracks, scat, nests, and calls to					
	understand wildlife presence and behavior.					
	• To implement various field methods for monitoring and estimating mammal,					
	bird, and reptile populations using direct and indirect evidence.	,				
Course	After successful completion of this course, students are expected to:					
Outcomes	Conduct independent wildlife surveys in diverse habitats.					
	• Collect and analyze reliable data on wildlife abundance and diversity.					
	• Contribute to wildlife conservation efforts through data collecti	on and				
	informed decision-making.					
	• Appreciate the importance of responsible wildlife observation and n	ninimize				
	disturbance to animals in their natural environments.					
Unit	Practical	Hours				
1.	Identification of mammalian fauna. (E)	4				
2.	Identification of avian fauna. (E)	4				
3.	Identification of herpeto-fauna. (E)	4				
	Demonstration of basic equipment needed in wildlife studies use, care and					
4.	maintenance(Compass, Binoculars, Global Positioning System, Various	4				
	types of Cameras and lenses). (D)					
5	Familiarization and study of animal evidences in the field; Identification of	4				
5.	animalsthrough pug marks, hoof marks, scats, pellet groups, nest, antlers etc. (E)	4				
6.	Demonstration of different field techniques for flora and fauna. (D)	4				
	Trail / transect monitoring for abundance and diversity estimation of	-				
7.	mammals (direct and indirect evidences).(E)	4				
8.	Trail / transect monitoring for abundance and diversity estimation of bird	4				
	(direct and indirect evidences).(E)	•				
9.	Trail / transect monitoring for abundance and diversity estimation of	4				
	reptiles(direct and indirect evidences). (E)					
10.	Study of trap camera in forest. (E)	4				
11.	Study of control of forest fire. (D)	4				
12.	Survey of aquatic birds. (E)	4				
13.	Scat analysis of predators.(D)	4				
14.	Study of Prey and predators interaction. (D) Visit to Noticen perk, Museum, National Senatury	4				
15.	Visit to Natioan park, Museum, National Sanctury	4				
Study	M.Kato. The Biology of Biodiversity, Springer. L.C. Avisa Malagular Markeys Natural History and Evalution.					
Acsources	• J.C. Avise. Molecular Markers, Natural History and Evolution,					
	Chapman and Hall, New York.					
	• E.O. Wilson. Biodiversity, Academic Press, Washington.					
	• B.K. Tikadar. Threatened Animals of India, ZSI Publication, Calcutta.					

MSc II (Zoology) Semester III ZOO-RP-617 Research Project I

Guidelines for Research Project at PG in Science Semester III

Hours: 120 Credits: 4

Course Objectives

- 1. To give exposure to the students to research culture and technology
- 2. To introduce students to how to select a research topic, plan, perform experiments, collect and analyze the data
- **3.** To foster self-confidence and self-reliance in the students as they learn to work and think independently

Course outcomes

After successful completion of this course, students are expected to:

- Conceive a problem based on published research and conduct a comprehensive literature survey.
- Plan and carry out the tasks in the given framework of the dissertation and present the work in writing and viva.
- Learn handling of instruments, use of chemicals and how to conduct the experiments
- Learn how to present the project in PowerPoint and answer the queries to examiners and the science of writing.

Credit distribution (1 credit for each unit)

- Identification of a research topic, formulation of research problem, objectives, sample size and hypothesis, etc
- Preparation of Outline
- Review of literature
- Bibliography

The systematic approach towards the execution of the project should be as follows: (Wherever applicable)

- 1. The complete tenure of the research project should be one year. It should be allotted during the third semester and completed in the fourth semester.
- 2. Weekly 8 hours should be allotted to the research project in a regular timetable.
- 3. In the third semester, students will be evaluated based on a credit distribution mentioned above. In the fourth semester, students should perform further research work, collect and analyze the data, compile the results and prepare and submit the final dissertation.
- 4. Students may be given an opportunity to participate in ongoing research activities in the respective Departments/Schools/Supervisors' laboratories. This will familiarize them with the literature survey and give them a fundamental understanding of designing and executing a research project.
- 5. Students may work individually or in groups (not more than 3 students) to be decided by the concerned department/supervisor.
- 6. Each research group should have a different research topic with some possible level of novelty.

- 7. The student should select the topic relevant to priority areas of concern or allied subjects with the guidance of supervisor/ head of the department.
- 8. Students are encouraged to work on multidisciplinary and applied projects, but it is not mandatory criteria.
- 9. At the beginning, students should submit the outline of the research work to be carried out in the project. (Writing in order: Title, Aim and objectives, Literature to be collected, Experimental plan or method design, expected outcome etc.)
- 10. Write and submit a Literature Review Report and Research outline
- Tentative order for review: Title of the Project, Certificates, Acknowledgment, Abstract and Keywords, Contents, Introduction, Literature Review, Aim of the Project, Materials and Methods, Bibliography/reference etc.
- Tentative order for research outline: Title page, introduction, background and significance of study, problems to be investigated, objective, hypothesis, chapter scheme, bibliography.
- 11. At the end of the third semester, each student should submit a detailed Literature Review Report and research outline.
- 12. An appropriate and essential conclusive statement must be drawn at the end of the study.
- 13. Students should maintain lab notebooks, and the Supervisor may ask them to submit the mid-semester progress report.
- 14. For documents related to project submission: Font- Times New Roman, Heading Font Size-14, Normal Text Size-12, spacing-1.5, both sides justified and 1 inch margin on all side, both side printing on A-4 size.
- 15. Three copies of the Literature Review Report, research outline should be prepared (one copy for each department, guide, and student).
- 16. At the end of the semester, the candidate should prepare and present research work using a PowerPoint presentation with modern ICT tools and present the same in front of his/her respective department during the Internal Examination.
- 17. For external examination the candidate will have to present the research work and face viva voce.
- 18. Students may present their research work in Avishkar/Webinars/Conferences.
- 19. Students should note that plagiarism is strictly prohibited.

Internal examination (40 marks): Components of continuous internal assessment:

- Draft Research Outline (10 marks)
- Draft Review of literature (10 marks)
- Working Bibliography (10 marks)
- PowerPoint presentation, and oral examination (10 marks)

External examination (60 marks) and Components of external assessment:

- Final submitted review report, research outline in bound form at the time of examination (40 marks)
- Overall presentation reflecting the contribution of work, response to questions (20 marks)

MSc II (Zoology) Semester IV ZOO-DSC-621: Animal Physiology II

Total Hours: 60 Credits:4

Total Hou	rs: ou Cre	edits:4
Course	• To understand the mechanisms of nerve impulse.	
Objectives	• To explore sensory physiology.	
	• To gain comprehensive knowledge of the endocrine system.	
	• To learn about general physiological processes.	
Course	After successful completion of this course, students are expected to:	
Outcomes	• Demonstrate knowledge of nerve impulse conduction.	
	• Explain sensory coding mechanisms, receptor functions.	
	• Identify and describe the roles and mechanisms of hormones.	
	• Gain knowledge of body fluids, bioluminescence, chronobiology, phero	omones
	Aging.	omones,
Unit	Topic	Hours
	Nervous System: Conduction of nerve impulse, conduction of impulse	
	through non-myelinated neuron, conduction of impulse through myelinated	
	neuron, synapse, conduction of impulse through synapse, neuromuscular	
	junction, properties of nerve impulse.	
	Sensory Physiology: Classification of Receptors: Chemoreceptors,	
	Mechanoreceptorsand Radioreceptors; Acoustico lateral line system;	15
	Echolocation or Sonar; Electroreception; Magnetoreception.	
	Endocrine system: Hypothalamo- Hypophyseal system – Specific function	
	of hypothalamus, Hypothalamic hypophyseal portal system – hypothalamic	
III	control of Anterior pituitary, regulation of posterior pituitary hormones.	15
	Mechanism of Hormone action at cellular level, Cyclic AMP –	
	Biochemical role, Cyclic AMP as II messenger.	
	General Physiology: Types of body fluids, importance of body fluid,	
I V/	concentration of body fluid, composition and physico chemical properties	15
	of Intracellular and Extracellualr fluid, composition of intestinal fluid,	13
	Bioluminescence, Chronobiology, pheromones, Aging.	
Study	• A. Mariakuttikan and N. Arumugam, (2017) Animal Physiology,	Saras
Resources	Publication.	
	• Pandey and Shukla, (2004) Regulatory mechanism in vertebrates. Ra	ıstogi
	Publication.	
	• Hogarth, P. J. (1978). Biology of reproduction. Wiley. New York, NY.	
	• Perry, J. S. (1971). The ovarian cycle of animals. Oliver and Boyd. Edi	inburgh,
	Scotland.	
	• Austin, C. R., and Short, R. V. (1972). Reproduction in mammals (Vo	ols. 1-8).
	Cambridge University Press. Cambridge, England.	
	• Williams, R. H. (1981). Textbook of endocrinology. W. B. S	Saunders
	Company. Philadelphia, PA.	
	• Chatterjee, C. C. (1985). Human physiology (Vol. II, 10 th ed.). Medica	ıl Allied
	Agency. Calcutta, India.	
	• Nagabhushanam, R. (2003). Textbook of animal physiology (2nd ed.).	Oxford
	and IBH Publishing Co. Pvt. Ltd. New Delhi, India.	

ZOO-DSC-622: Histology and Histochemistry

Total Hours: 60 Credits: 4

Course	• To define histology, explain its historical development, and identify its		
Objectives	applications in biological research and diagnosis.		
	• To differentiate between various types of tissues.		
	• To describe the principles and operation of different microtome types.		
	• To explain the steps involved in basic histological processing.		
Course	After successful completion of this course, students are expected to:		
Outcomes	• Interpret histological findings.		
	• Select appropriate microtome types for specific tissue preparation needs.		
	• Perform basic histological techniques efficiently and troubleshoot commo	on	
	issues.		
	• Utilize histological data in conjunction with other biological information.		
Unit	Topic	Hours	
	Definition, history, application of histology		
	• Types of tissue, characteristics and location.		
	• Types of microtome- Rocking microtome, Rotary microtome, Base		
I	sledges microtome, Sliding microtome, Freezing microtome, Ultra	15	
	microtome and cryostat.		
	 Basic histological processes: From fixation to mounting 		
	• Faults in section cutting. Their reasons and remedy		
	 Definition, concept and scope of histochemistry. 		
II	 Basic principle of histochemistry, Goal of histochemistry. 	15	
11	 Related term and special disciplines within histochemistry 	13	
	 Single and double staining method. 		
	• Detection of carbohydrates- Periodic acid-Schiff reaction, staining		
	methods for glycogen.		
III	 Detection of protein- Million reaction, DNFB reaction 	15	
111	 Detection techniques for lipids- Sudan black, Herxheimer method 	13	
	 Techniques specific for DNA- Fulgenrection 		
	 Techniques specific for RNA- Methyl- green pyronin stain 		
	• Special staining methods: Vital staining, Staining methods for		
	connective tissue, staining of mitochondria.		
	• Staining methods for nervous system (methods for axon and		
IV	neurofibrils)	15	
	• Fluorescence Antibody techniques- Direct staining, Sandwich		
	technique, Application		
	Chromosome staining methods		
Study	 Histochemistry by Pease, A. G. E., 1976 		
Resources	Microscopic histochemistry: by Gomori		
	• Ham R. W., Textbook of histology		
	• Bourne, G. H. An Introduction of Functional Histology		
	• Poddar and Mukhopadhyay, An Advanced Laboratory Manual of Zoole	ogy	

MSc II (Zoology) Semester IV ZOO-DSE-623(A): Forensic Science

Total Hours: 30 Credits: 2

Total Hours: 30 Credits: 2		
Course	• To define forensic science, explain its historical development, and recog	gnize its
Objectives		
	• To describe the services and functionalities provided by various forensic science	
	laboratories.	
	• To explain the proper procedures for collecting, packaging, and pro-	eserving
	biological evidence at a crime scene.	
	• To identify the significance of different types of biological evidence, included	ıding
	hair, body fluids, and skeletal remains.	
Course	After successful completion of this course, students are expected to:	
Outcomes	• Critically evaluate the role of forensic science in criminal investigations a	nd court
	proceedings.	
	• Appreciate the importance of proper evidence handling to maintain of	hain of
	custody.	
	• Collect and package biological evidence in a manner that preserves its i	ntegrity
	for analysis.	<i>.</i>
	• Interpret basic forensic analyses of biological evidence to assis	st in
	investigations.	
Unit	Topic	Hours
	Forensic Science : Definition, History and Development	
	Scope and importance of forensic science	7
I	Forensic Science Laboratories And Facilities:	7
	 Services and functionalities provided by various FSLs 	
	Biological Evidences Collection and Packaging:	
	Nature and importance of biological evidence.	
	Protection of Biological Evidences; Documentation; Recognition,	
***	Collection, Packaging and transportation of Biological Evidences	0
II	Significance of hair evidence. Transfer, persistence and recovery of	8
	hair evidence. Structure of human hair. Comparison of hair samples.	
	Morphology and biochemistry of human hair. Comparison of human	
	and animal hair.	
	Analysis of Biological Fluid	
	Saliva; Semen; Vaginal Fluid; Urine; Sweat; Serological Concepts;	
III	Antigen / Antibodies; Polyclonal antibodies; Monoclonal antibodies;	8
	Antiglobulins; Blood Grouping Human and Non-human; Analysis of	
	Skeletal Remains	
	Forensic Entomology	
	Basic Principle of Insect Biology; Life Cycle of Blow flies and	
IV	Dermestid Beetles; Collection of entomological evidence during death	7
	investigations	
	Estimation of Time of Death; Preservation of Sample.	
Study	Nanda, B.B. and Tewari, R.K. (2001): Forensic Science in India: A vision	
Resources	the twenty first century Select Publisher, New Delhi.	
	• James, S.H and Nordby, J.J. (2003) Forensic Science: An introduction to)

- scientific and investigative techniques CRC Press, USA.
- Barnett (2001): Ethics in Forensic Science.
- Saferstien: Forensic Science, Handbook I, II and III, Prentice Hall Inc. USA.

MSc II (Zoology) Semester IV ZOO-DSE-623(B): Toxicology

Total Hours: 30 Credits: 2

Course	• To explain the definition, scope, and historical development of toxicolog	y.	
Objectives	• To identify the main sources of toxic compounds and describe their movement		
	through the environment.		
	• To categorize different classes of toxicants and understand exposure r	outes in	
	various settings.		
	• To explain the principles of toxicity testing, toxicant processing in vivo, and		
	toxic action mechanisms.		
	After successful completion of this course, students are expected to:		
Outcomes			
	• Evaluate the importance of dose-response relationships in assessing toxic	•	
	• Discuss the methods used to assess the safety of new chemicals and drug		
	• Explain the mechanisms by which toxicants enter the body, distribute to	different	
	organs, and exert their harmful effects.		
Unit	Topic	Hours	
	Introduction to Toxicology: Definition and Scope, Relationship to Other	_	
I	Sciences, A Brief History of Toxicology, Dose-Response Relationships,	7	
	Sources of Toxic Compounds, Movement of Toxicants in the Environment		
	Classes of Toxicants: Exposure Classes, Toxicants in Air, Water, Soil,		
II	Domestic and Occupational Settings, Metals, Agricultural Chemicals	8	
	(Pesticides), Food Additives and Contaminants, Toxins, Solvents,		
	Therapeutic Drugs, Drugs of Abuse, Combustion Products, Cosmetics		
	Applied Toxicology: Toxicity Testing - Experimental Administration of		
	Toxicants, Chemical and Physical Properties, Exposure and Environmental	7	
	Fate, In Vivo Tests, In Vitro and Other Short-Term Tests, Ecological		
	Effects, Risk Analysis		
	Toxicant Processing In Vivo: Absorption and Distribution of Toxicants,		
	Cell Membranes, Mechanisms of Transport, Physicochemical Properties	0	
	Relevant to Diffusion, Routes of Absorption, Toxicant Distribution,	8	
	Toxicokinetics, Toxic Action: Acute Toxicity, Perspectives on Informatics		
	in Toxicology	5	
Study	• Pande, Shukla and Trivedi, (2011), Fundamentals of toxicology, 4th	Revised	
Resources	edition, New Central Book Agency, New Delhi.		
	• Sharma P. D., (2018), Toxicology, Rastogiprakashan, Meerut		
	• Dr. M. A. Subramanian, (2010), Toxicology: Principles and method	ds, MJP	
	publishers, Chennai.		

ZOO-DSC-624: Practical on Animal Physiology II

Total Hours:60 Credits: 2 Course • To provide students with an in-depth understanding of **Objectives** neurophysiological processes. • To examine sensory systems and reflex actions through practical demonstrations. • To explore thehypothalamo-hypophyseal system. • To study body fluids, aging, apoptosis, pheromone release, and biological clocks. After successful completion of this course, students are expected to: Course Outcomes • Students will gain practical skills and enhancing their understanding of the nervous system's functionality. • Students will be able to conduct and interpret sensory tests and applying these skills in clinical and research settings. • Students will comprehend the cellular mechanisms of hormone action, the functioning of thehypothalamo-hypophyseal system. • Students will understand the mechanisms of aging, apoptosis, pheromone signaling. Sr. No. **Practical** Hours Study of EEG. 1 4 Study of cranial nerves in human. 4 3 Study of neuro-muscular junction. 4 4 Study of action potential. 4 5 Testing of the Blind Spot. (E) 4 Testing for Color Blindness. (E) 4 6 Examining the effects of Smell, Texture, Temperature and Taste. 4 8 Study of reflex action. (E) 4 9 Study of Hypothalamo- Hypophyseal system. 4 Study of Mechanism of Hormone action at cellular level. 4 10 Study of bioluminescence. 4 11 12 Study of body fluids 4 4 13 Study of aging and apoptosis 14 Demonstration of pheromone release from the body of ants. (D) 4 15 Study of biological clock. A. Mariakuttikan and N. Arumugam, (2017) Animal Physiology, Saras Publication. Study Hogarth, P. J. (1978). Biology of reproduction. Wiley. New York, NY Resources Perry, J. S. (1971). The ovarian cycle of animals. Oliver and Boyd. Edinburgh, Scotland. Austin, C. R., and Short, R. V. (1972). Reproduction in mammals (Vols. 1-8). Cambridge University Press. Cambridge, England. Williams, R. H. (1981). Textbook of endocrinology. W. B. Saunders Company. Philadelphia, PA. Chatterjee, C. C. (1985). Human physiology (Vol. II, 10th ed.). Medical Allied Agency. Calcutta, India. Nagabhushanam, R. (2003). Textbook of animal physiology (2nd ed.). Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi, India.

ZOO-DSC-625: Practical on Histology and Histochemistry

Γotal Hours:6	0 C	redits: 2
Course Objectives	• To understand the basic morphology and structure of tissues.	cells and
	 To develop practical skills in mounting various tis including smooth muscle, epithelial, skeletal muscle, an tissue. To learn and apply methods for detecting cellular components. 	d nervous
	 as proteins, carbohydrates, nucleic acids, and lipids. To gain experience in histological techniques inclusions, immunohistochemistry, and enzyme estimation. 	ding vital
Course Outcomes	 After successful completion of this course, students are expect Students will be able to identify and describe the morp different cell and tissue types. Students will demonstrate proficiency in mounting and 	hology of
	 tissue samples for microscopic examination. Students will effectively apply techniques for deternallyzing cellular components and structures. Students will produce and submit high-quality permanent accurately perform specific staining and histochemical pro 	slides and
Sr. No.	Practical	Hours
1	To examine the basic morphology of cell and tissue.	4
2	Mounting of smooth muscle from suitable material. (E)	4
3	Mounting of epithelial tissue from suitable material. (E)	4
4	Mounting of skeleton muscle from suitable material. (E)	4
5	Mounting of nervous tissue from suitable material. (E)	4
6	Detection of protein by any suitable method. (E)	4
7	Detection of Carbohydrate (Polysaccharides) by Periodic acid- Schiff reaction. (E)	4
8	Detection of nucleic acid – DNA by Fulgen method. (E)	4
9	Identification of specified hisotological sections with reasons	4
10	Study of stratified squamous epithelium from cheek of man. (E)	4
11	Demonstrate the staining of the sections for calcium. (D)	4
12	Vital staining of Mitochondria by using Janus Green- B stain. (E)	4
13	Study of Imunohistochemistry (IHC).	4
14	Detection of alkaline phosphatase from given material. (E)	4
15	Submission of permanent slide- any five.	4
Study	• Histochemistry by Pease, A. G. E., 1976	
Resources	 Microscopic histochemistry: by Gomori Ham R. W., Textbook of histology Bourne, G. H. An Introduction of Functional Histology Poddar and Mukhopadhyay, An Advanced Laboratory I Zoology 	Manual of

ZOO-DSE-626(A): Practical on Forensic Science

Total Hour	rs: 60 Cred	lits:2
Course	• To learn methods for the examination and identification of	various
Objectives	biological stains including blood, semen, saliva, and urine.	
	• To understand and apply techniques for determining blood groups.	
	• To develop skills in forensic anthropology.	
	• To acquire proficiency in hair analysis,.	
Course	After successful completion of this course, students are expected to	:
Outcomes	• Students will demonstrate the ability to conduct and interpret t	
	biological stains.	
	• Students will accurately determine blood groups and	perform
	microscopic examinations of biological samples.	
	• Students will effectively estimate stature and determine se	x from
	skeletal remains such as skulls and pelvises.	
	• Students will identify and analyze hair and diatom samples, pro-	enare
	slides, and determine the origin of species using forensic techniq	-
Sr. No.	Practical	Hours
	Examination and identification of blood stains: Benzidin test,	Hours
1	Hemin test.	4
	Determination of blood groups from fresh and dry blood sample.	
2	(E)	4
	Examination and identification of semen stains: Acid phosphate	
3	test, Microscopic examination of spermatozoa. (E)	4
	Estimation and identification of saliva stains: Amylase test,	
4	Microscopic examination of epithelial cells. (E)	4
5	Examination and identification of urine stains. (E)	4
	Determination of the side and measurement of long bones for	
6	stature estimation. (E)	4
7	Determination of sex from skull and pelvis. (E)	4
	To examine hair morphology and determine the species to which	
8	the hair belongs. (E)	4
9	To prepare slides of scale pattern of human hair. (E)	4
10	To examine human hair for cortex and medulla. (E)	4
	Determination of origin of species (Tube method and agar gel	
11	method).	4
	Identify the given pugmark of wild animal and give its	
12	characteristics.	4
1.5	Identification, classification and microscopic examination of	
13	Diatoms.	4
14	Identification of teeth. (E)	4
15	Visit to any one Forensic Laboratory.	4
Study	• L. Stryer, Biochemistry, 3rd Edition, W.H. Freeman and Company, Ne	ew York
Resources	(1988).	
	• APPLETON and Lange, Norwalk (1993).	
	• S. Chowdhuri, Forensic Biology, BPRD, New Delhi (1971).	
	• R. Saferstein, Forensic Science Handbook, Vol. III, Prentice Hall, Nev	w Jersey
	(1993).	Ĩ

ZOO-DSE-626(B): Practical on Toxicology

Total Hou	rs:60 Cre	edits: 2
Course	• To investigate the impact of different concentrations of pesticides ar	nd heavy
Objectives	metals on respiratory behavior and opercular movements of fish or i	mosquito
	larvae.	
	• To determine LC50 values of pesticides and heavy metal salts using	g fish or
	mosquito larvae.	
	• To calculate and analyze Probit values to assess toxicity levels and e	ffects on
	biological systems.	
	• To study biochemical and histopathological changes in cells and	d tissues
	exposed to toxicants, including pesticides and heavy metals.	
Course	After successful completion of this course, students are expected to:	
Outcomes		
	• Students will accurately determine LC50 values through expe	erimental
	methods using appropriate biological indicators.	
	• Students will analyze Probit values to understand the dose-	response
	relationship and toxicity levels of pesticides and heavy metals.	
	• Students will effectively document and analyze biochemic	cal and
	histopathological changes in cells and tissues affected by toxicants.	
Sr. No.	Practical	Hours
1	Effect of different concentrations of pesticide on the respiratory	4
	behaviour of any fish / mosquito larvae.(E)	
2	Measurement of opercular movements of fish, exposed to different	4
	concentration of any heavy metals. (E)	
3	Determine the LC 50 value of any one pesticide by using fish /	4
	mosquito larvae.(E)	4
4	Determine the LC 50 value of one heavy metal salt by using fish/	4
	mosquito larvae. (E)	1
5	Calculate and analyseProbit value. (E)	4
6	Study of toxicant damage in cells and tissue Histopathological changes) with the helpofmicrophotographs/Xerox copies.	4
7	Effect of any pesticides on biochemical changes in fish/ suitable	4
,	material. (E)	4
8	Effect of any heavy metals on biochemical changes in fish/ suitable	4
U	material. (E)	·
9	Evaluate cell toxicity <i>in vitro</i> in cell line. (E)	4
10	Evaluate acute toxicity of any insecticide. (E)	4
11	Evaluation of subchronic toxicity of any insecticide.	4
12	Evaluation of chronic toxicity of any insecticide.	4
13	Study the toxic air and water pollutantants.(E)	4
14	Study of occupational toxicants.	4
15	Visit to study the air, water toxicants area e.g. industry effluents outlay	4
-	area.	
Study	• Pande, Shukla and Trivedi, (2011), Fundamentals of toxicology, 4th	Revised
Resources	edition, New Central Book Agency, New Delhi.	
	Sharma P. D., (2018), Toxicology, Rastogiprakashan, Meerut	
	• Dr. M. A. Subramanian, (2010), Toxicology: Principles and method	ds. MJP
	publishers, Chennai.	, 1.101
	<u> </u>	

MSc II (Zoology) Semester IV ZOO-RP-627 Research Project II

Guidelines for Research Project at PG in Science Semester IV

Hours: 180 Credits: 6

Course Objectives

- 1. To give exposure to the students to research culture and technology
- 2. To introduce students to how to select a research topic, plan, perform experiments, collect data and analyze the data
- **3.** To foster self-confidence and self-reliance in the students as they learn to work and think independently

Course outcomes

After successful completion of this course, students are expected to:

- 1. Conceive a problem based on published research and conduct a comprehensive literature survey.
- 2. Plan and carry out the tasks in the given framework of the dissertation and present the work in writing and viva.
- 3. Learn handling of instruments, use of chemicals and how to conduct the experiments
- 4. Learn how to present the project in PowerPoint and answer the queries to examiners and the science of writing.

The systematic approach towards the execution of the project should be as follows: (Wherever applicable)

- 1. The complete tenure of the research project should be one academic year. It should be allotted during the third semester and completed in the fourth semester.
- 2. Weekly 12 hours should be allotted to the research project in a regular timetable.
- 3. In the fourth semester, students should perform further experimental work, analyze the data and compile the results.
- 4. Students may be given an opportunity to participate in ongoing research activities in the respective Departments/Schools/Supervisors' laboratories. This will familiarize them with the literature survey and give them a fundamental understanding of designing and executing a research project.
- 5. Students may work individually or in groups (not more than 3 students) to be decided by the concerned department/supervisor.
- 6. Each research group should have a different research topic with some possible level of novelty.
- 7. The student should select the topic relevant to priority areas of concern or allied subjects.
- 8. Students are encouraged to work on multidisciplinary and applied projects, but it is not mandatory criteria.
- 9. Students are expected to work in line with the research outline and literature review, which was submitted in the third semester.
- 10.Students are expected to learn how to execute the research work systematically and overcome the hurdles. Students will get the opportunity to learn about practical aspects of many characterization techniques or models and further how to effectively employ them in the research work. Students should be able to critically evaluate the literature on

- the topic, identify the research gaps, plan and perform the experiments, interpret the results, understand the limitations of the work and draw conclusions.
- 11. At the end of the semester, each student should submit a detailed Research Report.
- 12. The format of the final research report shall be as per the guidelines of respective department. (**Example**:Title of the Project, Certificates, Acknowledgment, Abstract and Keywords, Contents, Introduction, Literature Review, Aim and objective, Materials and Methods, Result, Data analysis and Discussions, conclusion, limitations, suggestion, future scope, Bibliography, Appendix etc.)
- 13. An appropriate and essential conclusive statement must be drawn at the end of the study.
- 14. Students should maintain lab notebooks, and the supervisor may ask them to submit the mid-semester progress report.
- 15. For documents related to project submission: Font- Times New Roman, Heading Font Size-14, Normal Text Size-12, spacing-1.5, both sides justified and 1 inch margin on all side, both side printing on A-4 size.
- 16. Three copies of the dissertation should be prepared (one copy for each department, guide, and student).
- 17. At the end of the semester, the candidate should prepare and present research using a PowerPoint presentation using modern ICT tools during the Internal and External Examination.
- 18. Besides writing a dissertation, students are encouraged to write a manuscript/patent if the results obtained are worthy of publication.
- 19. Students may present their research work in Avishkar/Webinars/Conferences.
- 20. Students should note that plagiarism is strictly prohibited.

Internal examination (60 marks): Components of continuous internal assessment:

- Literature collected, methodological planning, analysis of data, design and work, progress reports etc (30 marks)
- Presentation in Webinars/Conferences/publication and departmental presentationetc(20 marks)
- Oral examination (10 marks)

External examination (90 marks) and Components of external assessment:

- Evaluation of dissertation submitted in bound form at the time of examination (60 marks)
- Presentation (PPT format) (15 marks)
- Overall presentation reflecting the contribution of work, Response to questions (15 marks)