K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी -'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date: 25/04/2025

NOTIFICATION

Sub :- CBCS Syllabi of B. Sc. in Physics (Sem. V & VI)

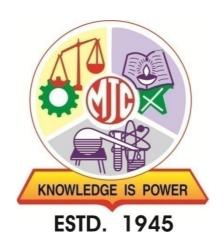
Ref. :- Decision of the Academic Council at its meeting held on 22/04/2025.

The Syllabi of B. Sc. in Physics (Fifth and Sixth Semesters) as per **NATIONAL EDUCATION POLICY – 2020 (2023 Pattern)** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2025-26.

Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies

To:


- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

Khandesh College Education Society's

Moolji Jaitha College, Jalgaon

An "Autonomous College"

Affiliated to
Kavayitri Bahinabai Chaudhari
North Maharashtra University, Jalgaon-425001

STRUCTURE AND SYLLABUS

B.Sc. Honours/Honours with Research (T.Y. B.Sc. Physics)

Under Choice Based Credit System (CBCS) and as per NEP-2020 Guidelines

[w.e.f. Academic Year: 2025-26]

Preface

In order to achieve skill and knowledge, higher education system establish NEP in 2020. The Moolji Jaitha College (Autonomous) adopt department-specific model as per NEP-2020, guideline of UGC, and Government of Maharashtra.

The National Education Policy (NEP) framework's T.Y. B.Sc. Physics curriculum aims to give students a substantial foundation in both basic and applied Physics. To ensure a well-rounded educational experience, this curriculum integrates core principles with advanced fields of study and technology.

As a fundamental field of study, Physics is essential to comprehending both technology developments and natural events. The updated curriculum offers flexibility and interdisciplinary learning possibilities while adhering to the Choice-Based Credit System (CBCS). Students can improve both theoretical knowledge and practical abilities through the combination of core courses, discipline-specific electives, skill enhancement courses, On-Job training (OJT), internship and research-based projects.

The course is designed to equip students with experimental techniques, computational methods, and practical applications, preparing them for higher education, research, and industry careers. Core subjects include Solid state Physics, Quantum Mechanics, Nuclear Physics, Electronics, and Computational Physics, Renewable and sustainable energy sources complemented by elective courses that reflect modern scientific advancements. Each course in the syllabus has been thoughtfully designed to maintain a balance between theoretical knowledge and practical application. Our experienced faculty, experts in their respective domains, will lead you through interactive lectures, laboratory experiments, and research projects that enhance critical thinking, problem-solving skills, and a deeper grasp of the subject.

We believe this syllabus will train students with essential critical thinking, problem-solving skills, and practical experience, enabling them to thrive in their careers. We sincerely appreciate the contributions of academic experts, educators, and stakeholders who played a vital role in shaping this curriculum to align with the ever-evolving landscape of science and technology.

Our hope is that this syllabus ignites curiosity, fosters creativity, and cultivates a deep passion for Physics, guiding students toward becoming future scientists, researchers, and innovators.

Hence, **Board of Studies in Physics** in its online meeting held on **22nd March 2025**, **Saturday** resolved to accept therevised syllabus for T. Y. B. Sc. (Physics) based on Choice Based Credit System (CBCS) of UGC, NEP-2020 and the Government of Maharashtra guidelines.

Program Outcomes (PO) for B.Sc. Program:

Program outcomes associated with a B.Sc. degree are as follows:

PO No.	PO
1	Graduates should have a comprehensive knowledge and understanding of the fundamental
	principles, theories, and concepts in their chosen field of study.
2	Graduates should possess the necessary technical skills and competencies related to their
	discipline, including laboratory techniques and data analysis.
3	Graduates should be able to identify, analyze, and solve complex problems using logical
	and critical thinking skills. They should be able to apply scientific methods and principles
	to investigate and find solutions.
4	Graduates should be proficient in effectively communicating scientific information, both
	orally and in writing.
5	Graduates should have a basic foundation in research methods and be capable of
	designing and conducting scientific investigations.
6	Graduates should be able to work effectively as part of a team, demonstrating the ability
	to collaborate with others, respect diverse perspectives, and contribute to group projects.
7	Graduates should recognize the importance of ongoing learning and professional
	development. They should be equipped with the skills and motivation to engage in
	continuous learning, adapt to new technologies and advancements in their field, and stay
	updated with current research.

Programme Specific Outcome (PSO) for B.Sc. Physics Honours/Honours with Research:

After completion of this program, students are expected to learn/understand the:

PSO No.	PSO
1	Strong conceptual foundation in core areas of Physics, including solid state Physics,
	Quantum Mechanics.Utilize mathematical approaches to examine physical phenomena
	and tackle intricate scientific challenges.
2	Exposure to emerging fields such as nanotechnology, renewable energy, electronics, and
	computational modeling.
3	Scientific challenges with logical reasoning, problem-solving abilities, quantitative
	analysis& develop innovative solutions by integrating knowledge by collaborating other
	disciplines.
4	Research-driven skills in Physicsbydesigning experiments, and conducting scientific
	investigations to foster innovation and technological advancements through
	interdisciplinary collaborations.
5	Practical expertise in advanced experimental methods, gathering data, analyzing
	outcomes, and interpreting findings using statistical and computational techniques.
6	To address societal and environmental challenges, promoting sustainable development&
	cultivate a mindset for continuous learning to advancements in Quantum Mechanics,
	material science, modern Physics and space research.

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree depending upon the number of credits secured;

Levels	Qualification Title	Credit Requ	Semester	Year	
		Minimum	Maximum		
4.5	UG Certificate	40	44	2	1
5.0	UG Diploma	80	88	4	2
5.5	Three Year Bachelor's Degree	120	132	6	3
6.0	Bachelor's Degree- Honours	160	176	8	4
	Or				
	Bachelor's Degree- Honours with Research				

Credit distribution structure for Three/ Four year Honors/ Honors with Research Degree Programme with Multiple Entry and Exit

F.Y. B.Sc.

Year	Sem	Subject-I	Subject-II	Subject-III	Open	VSC,	AEC, VEC,	CC, FP,	Cumulative	Degree/
(Lev el)	Sem	(M-1)	(M-2)	(M-3)	Elective (OE)	SEC (VSEC)	IKS	CEP, OJT, RP	Credits/Sem	Cumulative Credit
ī	I	DSC-1(2T) DSC-2(2P)	DSC-1(2T) DSC-2(2P)	DSC-1(2T) DSC-2(2P)	OE- 1(2T)		AEC-1(2T) (Eng) VEC-1(2T) (ES) IKS(2T)	CC-1(2T)	22	UG
(4.5)	II	DSC-3(2T) DSC-4(2P)	DSC-3(2T) DSC-4(2P)	DSC-3(2T) DSC-4(2P)	OE- 2(2T) OE- 3(2P)		AEC-2(2T) (Eng) VEC-2(2T) (CI)	CC-2(2T)	22	Certificate
	Cum. Cr.	8	8	8	6		10	4	44	

Exit option: Award of UG Certificate with 44 credits and an additional 4 credits core NSQF course/ Internship OR Continue with Major and Minor.

S.Y. B.Sc.

Year (Level)	Sem	Subjec (M-1 Majo	1)	Subject-II (M-2) Minor #	Subject- III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
		Mandatory	Elective	(MIN)							
		(DSC)	(DSE)								
	III	DSC-5(2T) DSC-6(2T) DSC-7(2P)		MIN-1(2T) MIN-2(2T) MIN-3(2P)		OE-4(2T)	SEC-1(2T)	AEC-3(2T) (MIL)	CC-3(2T) CEP(2)	22	UG
2 (5.0)	IV	DSC-8(2T) DSC-9(2T) DSC-10(2P)		MIN-4(2T) MIN-5(2P)		OE-5(2T)	SEC-2(2T) SEC-3(2P)	AEC-4(2T) (MIL)	CC-4(2T) ◎FP(2)	22	Diploma
	Cum . Cr.	12		10		4	6	4	8	44	

^{*} Student must choose one subject as a Major subject out of M-1, M-2 and M-3 that he/she has chosen at First year # Student must choose one subject as a Minor subject out of M-1, M-2 and M-3 that he/she has chosen at First year (Minor must be other than Major)

© OJT/Internship/CEP should be completed in the summer vacation after 4th semester

T.Y. B.Sc.

						·I·Dibt					
Year (Level)	Sem	Subje (M-		Subject-II (M-2)	Subjec t-III	Open Elective	VSC, SEC	AEC, VEC, IKS	CC, FP, CEP,	Cumulative Credits/Sem	Degree/ Cumulative
(===:=)		Maj	,	Minor	(M-3)	(OE)	(VSEC)		OJT/Int/RP		Credit
		Mandatory	Elective	(MIN)							
		(DSC)	(DSE)								
	V	DSC-11(2T) DSC-12(2T) DSC-13(2T) DSC-14(2P) DSC-15(2P)	DSE-1A/B (2T) DSE-2A/B (2P)				VSC- 1(2T) VSC- 2(2P)		OJT/Int (4)	22	
3 (5.5)	VI	DSC-16(2T) DSC-17(2T) DSC-18(2T) DSC-19(2T) DSC-20(2T) IKS DSC-21(2P) DSC-22(2P)	DSE-3A/B (2T) DSE-4A/B (2P)				VSC- 3(2T) VSC- 4(2P)			22	UG Degree
	Cum . Cr.	24	8				8		4	44	
		•	Exit o	ption: Award of U	UG Degree i	n Major with	132 credits Ol	R Continue with	Major and Minor		

Fourth Year B.Sc. (Honours)

Year (Level)	Sem	Major Co	ore Subjects	Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-23(4T) DSC-24(4T) DSC-25(4T) DSC-26(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)					22	UG
IV (6.0)	VIII	DSC-27(4T) DSC-28(4T) DSC-29(4T) DSC-30(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					OJT/Int (4)	22	Honours Degree
	Cum. Cr.	28	8	4				4	44	
			Fo	our Year UG Honors	Degree in Major an	d Minor	with 176 credits			

Fourth Year B.Sc. (Honours with Research)

Year (Level)	Sem	Major Core	e Subjects	Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-23(4T) DSC-24(4T) DSC-26(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)				RP(4)	22	UG
IV (6.0)	VIII	DSC-27(4T) DSC-28(4T) DSC-30(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					RP(8)	22	Honours with Research Degree
	Cum . Cr.	20	8	4				12	44	

Skill Enhancement Course, VSEC- Vocation and Skill Enhancement Course, AEC- Ability Enhancement Course, IKS- Indian Knowledge System, VEC- Value Education Course, T- Theory, P- Practical, CC-Co-curricular RM- Research Methodology, OJT- On Job Training, FP- Field Project, Int- Internship, RP-Research Project, CEP- Community Extension Programme, ENG- English, CI- Constitution of India, MIL- Modern Indian Laguage.

- Number in bracket indicate credit
- The courses which do not have practical 'P' will be treated as theory 'T'
- If student select subject other than faculty in the subjects M-1, M-2 and M-3, then that subject will be treated as Minor subject, and cannot be selected as Major at second year.

Details of T.Y. B.Sc. (Physics)

Course	Course		Course Title	G 11.	Teac	hing l Weel	Hours/ k		Ma	rks	
	Type	Course Code		Credits	T	P	Total	Inte	rnal	Exte	ernal
								T	P	T	P
		1	Semester V, Level – :				1		1	1	1
DSC-11	DSC	PHY-DSC-351	Mathematical Physics	2	2		2	20		30	
DSC-12	DSC	PHY-DSC-352	Solid State Physics	2	2		2	20		30	
DSC-13	DSC	PHY-DSC-353	Classical Mechanics	2	2		2	20		30	
DSC-14	DSC	PHY-DSC-354	Practical on Mathematical & Solid State Physics	2		4	4		20		30
DSC-15	DSC	PHY-DSC -355	Practical on Classical Mechanics	2		4	4		20		30
DSE-1A	DSE	PHY-DSE-351A	Laser Physics	2	2		2	20		30	
DSE-1B	DSE	PHY-DSE-351B	Forensic Physics	2	2		2	20		30	
DSE-2A	DSE	PHY-DSE-352A	Practical on Laser Physics	2		4	4		20		30
DSE-2B	DSE	PHY-DSE-352B	Practical on Forensic Physics	2		4	4		20		30
VSC-1	VSC	PHY-VSC-351	Renewable Energy	2	2		2	20		30	
VSC-2	VSC	PHY-VSC-352	Practical on Renewable Energy	2		4	4		20		30
OJT/Int	OJT	PHY-OJT-351	On Job Training/Internship	4		8	8		40		60
			Semester VI, Level –	5.5		I	l l		I		
DSC-16	DSC	PHY-DSC-361	Classical Electrodynamics	2	2		2	20		30	
DSC-17	DSC	PHY-DSC-362	Nuclear Physics	2	2		2	20		30	
DSC-18	DSC	PHY-DSC-363	Quantum Mechanics	2	2		2	20		30	
DSC-19	DSC	PHY-DSC-364	Atomic Physics	2	2		2	20		30	
DSC-20	DSC/IKS	PHY-DSC-365	Physics Behind Historical Monuments	2	2		2	20		30	
DSC-21	DSC	PHY-DSC-366	Practical on Electrodynamics and Nuclear Physics	2		4	4		20		30
DSC-22	DSC	PHY-DSC-367	Practical on Quantum Mechanics & Atomic Physics	2		4	4		20		30
DSE-3A	DSE	PHY-DSE-361A	Advanced Electronics	2	2		2	20		30	
DSE-3B	DSE	PHY-DSE-361B	Introduction to Atmospheric & Space Sciences	2	2		2	20		30	
DSE-4A	DSE	PHY-DSE-362A		2		4	4		20		30
DSE-4B	DSE	PHY-DSE-362B	Practical on Atmospheric & Space Sciences	2		4	4		20		30
VSC-3	VSC	PHY-VSC-361	Computational Physics using C language	2	2		2	20		30	
VSC-4	VSC	PHY-VSC-362	Practical on Computational Physics and C language	2		4	4		20		30

Examination Pattern

Theory Question Paper Pattern:

- 30 (External) +20 (Internal) for 2 credits
 - o External examination will be of 1½ hours duration

- There shall be 3 questions: Q1 carrying 6 marks and Q2, Q3 carrying 12 marks each. The tentative pattern of question papers shall be as follows;
- o Q1 Attempt any 2 out of 3 sub-questions; each 3 marks
- o Q 2 and Q3 Attempt any 3 out of 4 sub-question; each 4 marks.

Rules of Continuous Internal Evaluation:

The Continuous Internal Evaluation for theory papers shall consist of two methods:

- **1. Continuous & Comprehensive Evaluation (CCE):** CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:
 - i. Individual Assignments
 - ii. Seminars/Classroom Presentations/Quizzes
 - iii. Group Discussions/Class Discussion/Group Assignments
 - iv. Case studies/Case lets
 - v. Participatory & Industry-Integrated Learning/Field visits
 - vi. Practical activities/Problem Solving Exercises
 - vii. Participation in Seminars/Academic Events/Symposia, etc.
 - viii. Mini Projects/Capstone Projects
 - ix. Book review/Article review/Article preparation
 - x. Any other academic activity
 - xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that three units of the syllabus are mapped to the CCEs.
- **2. Internal Assessment Tests (IAT):** IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher is at liberty to decide which units are to be assessed using CCEs and which unit is to be assessed on the basis of IAT. The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations. The subject teachers are required to communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Practical Examination Credit 2: Pattern (30+20)

External Practical Examination (30 marks):

- Practical examination shall be conducted by the respective department at the end of the semester.
- Practical examination will be of 3 hours duration and shall be conducted as per schedule.
- Practical examination shall be conducted for 2 consecutive days for 2 hr/ day where incubation conditionis required.
- There shall be 05 marks for journal and viva-voce. Certified journal is compulsory to appear for practical examination.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by department as per schedule given.
- For internal practical examination student must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and the Head of the department.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities assigned by the faculty during regular practicals. For details refer internal theory examination guidelines.
- Finally 40 (10+30) marks performance of student will be converted into 20 marks.

SEMESTER-V

T.Y. B.Sc. Physics (Major) Semester-V

PHY-DSC-351: Mathematical Physics

Course Outcomes	 To impart knowledge about various mathematical tools employed to study Physics problems. To understand the essential mathematical concepts like vector analysis, differential equations analysis and probability. To understand and apply mathematical methods to solve problem in various areas of Physics. To understand the various applications of vector analysis, differential equations, complex an probability in Physics. After successful completion of this course, students are expected to: Understand the concept of vector integration for solving mechanics and electrodynamics problems. Able to solve linear and partial differential equation that arises in Physics like classical in electrodynamics, etc. Understand the concept of complex analysis and probability to solve the problems in mechanics, electromagnetism and fluid dynamics. Able to interpret the physical meaning of mathematical results. 	alysis and ems. nechanics,
Unit	Contents	Hours
Unit I	 Vector Analysis Ordinary Integral of Vectors. Line, Surface and Volume Integrals. Flux of a Vector Field. Gauss' Divergence Theorem, Green's Theorem and Stokes Theorem (Statements, proofs and problems) and applications. 	08
Unit II	 Partial Differential Equations Introduction to Partial differential equations (PDE), General methods for solving second order PDE, Method of separation of variables in Cartesian, Spherical polar and cylindrical co-ordinate system (two dimensional Laplace's equation, one dimensional Wave equation), Singular points (x = x₀), Solution of differential equation-Statement of Fuch's theorem, Frobenius method of series solution and applications. 	07
Unit III	 Complex Analysis Complex numbers and their graphical representation, Argand diagram, Conjugate of a complex number, Basic mathematical operations with complex numbers, Euler's formula, De-Moivre's theorem, Roots of complex numbers, Functions of complex variables, Analyticity and Cauchy - Riemann conditions, Singular functions, Examples, Cauchy's Integral formula and applications. 	08
Unit IV	 Probability A definition of the probability, sample space, fundamental probability theorems, random variables, and probability distributions: binomial, Poisson, normal and applications. 	07
Study References	 Arfken G. B., Weber H. J, Harris F. E. (2013), Mathematical Methods for Physicists, 7th edition, USA. Boas M. L., (2006), Mathematical methods in the physical sciences, 3rd edition, John Willy and Sons publication, De Paul University. Narlikar J. V., (2010), An Introduction to Relativity, 1st edition, Cambridge university press. Gupta B. D., (2010), Mathematical Physics, 4th Edition, Vis Publishing House Pvt. Ltd., New Delhi. Dass H. K., (2014) Mathematical Physics, 7th Revised edition, S. Chand and Company Pvt. Ltd, New Delhi. 	

T.Y. B.Sc. Physics (Major) Semester-V PHY-DSC-352: Solid State Physics

Objectives	 To impart knowledge of basic concepts in Solid state Physics. To understand the different types of crystal structures and symmetries, a relationship between real and reciprocal space. To understand behavior and role of electrons for the formation of bands an gaps in solids, which affects an electrical conductivity of solid. To study various properties like magnetic and dielectric of materials based o gaps. After successful completion of this course, students are expected to: Understand arrangements of atoms, Crystal, Lattice, Unit cell, Tran vectors. Apply the concept and use knowledge of Solid State Physics to study n characteristics. Comprehend free electrons, cohesive energy and band theory of solids. 	d band on band slation
	 Use solid state Physics in development of new materials and technologies 	ı
Unit	Contents	Hours
Unit I	 The Crystalline state Classification of solids Lattice, Basis & crystal structure, translational vector, Unit&Primitive unit cell, Symmetry operations, Fundamental types of lattices (2D & 3D), Miller indices, Index system for crystalline planes, Interplaner distances, Co-ordination number, atomic radius and packing fraction for SC, BCC and FCC structures, Study of NaCl and ZnS structures Concept of reciprocal lattice and its properties with proofs. Applications of Crystallite Materials in; LEDs, biomedical application-drug development, prosthetic Numericals 	09
Unit II	 X-Rays Diffraction by crystals Crystal as a grating for X-rays, Bragg's diffraction condition in direct lattice and reciprocal lattice, Ewald's construction, X-ray Diffraction methods (Laue, Rotating crystal and Powder method) Brillouin zones (1D & 2D). Applications of X-Ray diffraction for pharmaceutical analysis, DNA study, forensic science, Quality control in brief. Numericals 	08
Unit III	 Cohesive energy & Bonding in solids Cohesive energy and formation of molecules, Definition of dissociation energy of molecule, Types of bonding, Madelung energy&constant for one 1D ionic crystal. study of deformation in solids, energy storage devices (introduction). Numericals 	06
Unit IV	Lattice vibrations & Band theory in Solids Lattice heat capacity, Classical theory of specific heat, Einstein's model, Debye's model Limitations of Debye model. Drude-Lorentz model, Sommerfield's Free electron gas in 1-D and 3-D	07

	■ Vibrational modes in one-dimension monoatomic lattice,
	■ Hall Effect: Introduction, derivation, factors affecting Hall effect
	■ Applications: Infrared absorption, Hall effect sensors, power & current
	sensors.
	■ Numericals
Study	• Charles Kittle (2019), Kittel's Introduction to Solid State Physis, Willey
Resources	India Edition
	A.J. Dekkar (2008), Solid State Physics, Pan Macmillan.
	S.O. Pillai (2018), Solid State Physics, 9 th Edition, New Age International
	Publishers.
	■ Dr. S. L. Gupta, Dr. V. Kumar (2018), Solid State Physics, K. Nath & CO.
	Meerut.
	C. Hemraja, S. L. Kakani (2005) Solid State Physics: Theory, Applications
	& Problems 4 th Edition, Sultan Chand & Sons.
	C. M. Kachhava (2003), Solid State Physics, Solid State Devices & Solid
	State Electronics, New Age International Publishers.
	R. L. Singhal, P. A. Alvi (2011), Solid State Physics: KNRN Publisher.
	B.S. Saxena, R.C. Gupta, P.N. Saxena (2020), Fundamentals of Solid State
	Physics, Pragati Prakashan, Meerut
	J.N. Mandal (2016), Concepts of Solid State Physics, Pragati Prakashan,
	Meerut.
	R. K. Puri and V. K. Babbar (2010), Solid State Physics, S. Chand & CO.
	Ltd.
	Liu.

T.Y. B.Sc. Physics (Major) Semester-V PHY-DSC-353: Classical Mechanics

Course	 Describe methods of solving equations of motions. 	
01. : - 4:	 Describe methods of solving equations of motions. Explain necessity of considering constraints. 	
Ü	 Apply different techniques to find solutions of problems in Mechanics. 	
Course	Compare and contrast Newtonian, Lagrangian and Hamiltonian approaches. After processful completion of this course students are consisted to:	
	After successful completion of this course, students are expected to:	
0 0-11 0 0-11	■ Understand the concept of reduction of two body problem into one body problem	l .
	• Know the applications of Kepler's laws of planetary motion.	
	• Study the concepts of scattering of particles in different frames of references.	
T T •4	 Learn the formulation of Lagrangian and Hamiltonian mechanics for different systems. 	
Unit	Contents	Hours
	Introduction to Classical Mechanics	
	 Overview of classical mechanics 	
	Newton's laws of motion and their limitations	
Unit I	Types of forces: Gravitational, Lorentz, Hooke's, Frictional forces	06
	Fundamental forces of nature	
	 Projectile motion in various media, Rocket motion 	
	■ Numericals	
	Motion in Central Force Field	
	 Concept and properties of central force 	
Unit II	 Reduction of two-body problem to equivalent one-body problem 	06
CIIII II	 Motion in central force field, equation of orbit 	00
	 Kepler's laws of planetary motion, Artifical satellite 	
	■ Numericals	
	Scattering of Particles	
	 Elastic and inelastic scattering: Definition and properties 	
Unit III	■ Elastic scattering: Laboratory and center of mass system	08
OIII III	 Scattering: Scattering angles in laboratory and center of mass system 	00
	 Differential cross-section, impact Parameter, total cross-section in brief 	
	■ Numericals	
	Langrangian and Hamiltonian Formulation	
	• Constraints and their Classification, Example of Constrains, degrees of	
	freedom, generalized coordinate, configuration space	
Unit IV	■ Principle of Virtual work done	10
Omt IV	■ D'Almeberts Principle of virtual work	10
	 Langrangian equation from D' Alembert's principle, cyclic coordinates 	
	■ Phase space, Hamiltonian's equation	
	Numericals	
	Classical Mechanics: Herbert Goldstein, Narosa Publishing House	
Resources	 Classical Mechanics: J.C. Upadhyaya, Himalaya Publishing Houses 	
	■ Introduction to Classical Mechanics: R.G. Takawale, P.S. Puranik, Tata	
	McGraw Hill Publishing Company Ltd., New Delhi.	
ı	Classical Mechanics: N.C. Rana and P.S. Joag, Tata McGraw Hill Education	
1	Private Limited, New Delhi	

Classical Mechanics: P.V. Panat, Narosa Publishers	

T.Y. B.Sc. Physics (Major) Semester-V

PHY-DSC-354: Practical on Mathematical & Solid state Physics

Objectives	To learn basics of solid state Physics using crystal To understand atomic arrangement and crystal structures using XRD.	
•	To understand atomic arrangement and crystal structures using AND.	
	To learn appropriate data analysis using mathematical techniques for interpretation	of XRD
	pattern.	or ARD
-	To use this knowledge in various field.	
~	fter successful completion of this course, students are expected to:	
^ 4	Read and understand the XRD pattern.	
	Apply mathematical Physics in practical problems.	
	Solve the problems based on vector integration, differential equation, complex	analysis
	andprobability.	
•	Apply the mathematical concepts on various concepts of Physics.	
Sr. No.	Contents	Hours
1 T	Γο study the crystal structure of a given specimen (b.c.c., f.c.c., h.c.p).	4
2 T	Γο study bravais lattices with the help of models.	4
.)	To study heat treatment processes (annealing & tempering) applied to a given	4
	specimen.	-
4 Te	o study DNA x-ray diffraction pattern.	4
5 T	Γo study spongy and hard bone using given XRD pattern.	4
6 T	Γο calculate inter planner distance using given data.	4
7 T	Γο study & interpret XRD pattern for cancer cells.	4
8 To	o study the solidification curve of given metal.	4
9 T	Γο determine mobility in given material using Hall Effect.	4
10 T	Γο study Hall effect using given Hall Set-up.	4
11 T	Γο determine specific heat of solid.	4
12 i	Two six-sided dice are rolled together. Make a probability distribution for the sum of the values on the dice after being rolled. i) List out all possible outcomes of the experiment. ii) Count the total number of outcomes and calculate the probability of each outcome. Display the information in a histogram with probabilities on the vertical axis and outcomes on the horizontal axis.	4
	Verify Stokes theorem for given data.	4
14 i i i I	Two indistinguishable coins are flipped together. Make a probability distribution for the result of flipping the coins. i) List out all possible outcomes of the experiment. ii) Count the total number of outcomes and calculate the probability of each outcome. Display the information in a histogram with probabilities on the vertical axis and outcomes on the horizontal axis.	4
	Verify Green's 1 st and 2 nd theorem for given data.	4
	Verify Gauss divergence theorem for given data.	4
17 F	Plot the given complex numbers on Argand's diagram.	4

18	Prove that for any two complex numbers z_1 and z_2 $ z_1 + z_2 ^2 + z_1 - z_2 ^2 = 2 z_1 ^2 + 2 z_2 ^2$	4
Study	• Nishant Patel, Gautam Sharma (2010) Experiments in Solid State Physics, Campus	
Resources	Books Inrenational, ISBN-13978-8180302725.	
	• Dr. Alok Kumar Gupta Senior Secondary Course Physics Laboratory Manual	
	National Institute of Open Schooling (An autonomous organisation under	
	MHRD, Govt. of India) A-24-25, Institutional Area, Sector-62, Noida-201309	
	(U.P.) Website: www.nios.ac.in, Toll Free No. 18001809393.	
	• Harlard Ibach, Hans Luth (1991) Solid-State Physics-An Introduction to Theory &	
	Experiment Springer Verlag	

*Mandatory to perform any 12 practical from above.

T.Y. B.Sc. Physics (Major) Semester-V

PHY-DSC-355: Practical on Classical Mechanics

Course Objectives	■ To determine Young's modulus, coefficient of viscosity, moment of inertia&verify fundamental laws of Physicsexperimentally.		
Sojecures	To study the behavior of mechanical systems, such as oscillations of a cantilever		
	beam, motion under gravity, and rotational dynamics.		
	To analyze forces and frictional effects by determining the coefficient of friction and		
	understanding limiting friction.		
	To understand electromagnetism through experiments, such as studying t	the Lorentz	
Course	force and verifying electromagnetic principles.		
	After successful completion of this course, students are expected to: Ability to measure and analyze material properties like elasticity and rig	idity using	
	experimental methods.	dity using	
	Proficiency in using laboratory instruments such as viscometers, pendo	ulums, and	
	optical measurement tools.		
	 Application of theoretical Physics in real-world problems, such as planeta 	ary motion,	
	mechanical stability, and energy conservation.		
	 Development of data analysis and error estimation skills, leading t scientific conclusions based on experimental results. 	o accurate	
Sr. No.	Contents	Hours	
1	To study the Lorentz force using Electromagnetic field.	4	
2	To determine Moment Inertia of Rod	4	
3	To determine Moment of Inertia of Solid Sphere & Hollow sphere	4	
4	To measure of Velocity & Distance of free falling object for various time	4	
5	To determine Young Modulus using bending beam.	4	
6	To determine Young Modulus & Modulus of Rigidity using Searl's methods	4	
7	To determine coefficient of Visocity of Rotating Cylinder	4	
8	To find a Natural Frequncy of Cantilever beam.	4	
9	To study the relation between force of limiting friction & normal reaction	4	
10	To find the coefficient of friction between surface of a moving block and that of	4	
	a horizontal surface.		
11	To determine the Centre of Mass of any Random shaped.	4	
12	To verify the Kelper Laws	4	
13	To verify the law of conservation of given body [Total Energy= K.E.	4	
1.4	&P.E.(Visocity-medium -scale)]	A	
14	To determine the length of second pendulum	4	
	A point particle of mass m is constrained to move in one dimension on the x-		
15	axis. The force acting on the particle can be derived from the velocity dependent.	4	
	The force acting on the particle can be derived from the velocity-dependent potential $U = F(dx/dt)t$.	+	
	Write down (a) the Lagrangian, (b) the Hamiltonian, (c) Hamilton's equations.		
	"The down (a) die Dagrangian, (b) the Hammonian, (c) Hammon's equations.		

Study Resources B.L. Worsnop & H.T. Flint, Advanced Practical Physics for Students, Methuen & Co Ltd. Squires, G.L., Practical Physics, Cambridge University Press. Indu Prakash & Ramakrishna, A Textbook of Practical Physics, Kitab

- K. K. Mahajan, A Textbook of Practical Physics, S. Chand Publishing.
- S. Chattopadhyay, *Practical Physics*, New Central Book Agency.

Mahal Publishers.

- R.C. Smith & J. M. Smith, *Mechanics: Experimental Methods*, Oxford University Press.
- J. B. Marion & S. T. Thornton, *Classical Dynamics of Particles and Systems*, Cengage Learning.
- W. M. Smart, *Textbook on Spherical Astronomy*, Cambridge University Press.
- B.S. Agarwal, *Laboratory Manual of Physics for Undergraduate Students*, CBS Publishers.

*Mandatory to perform any 12 practical from above.

T.Y. B.Sc. Physics (Elective) Semester-V PHY-DSE-351A: Laser Physics

-		1
Course	• To learn basic phenomenon of energy transmission for laser formation.	
objectives	• To learn the fundamental concepts and characteristics of Laser.	
	• To develop experimental knowledge of various types of atomic/molecular spectra.	
	To learn the basic techniques of experimental spectroscopy.	
	After successful completion of this course, students are expected to:	
outcomes	• Know the theoretical and experimental background of atomic as well as molecular spec	etra.
	• Understand various types of Lasers, their working and applications.	
	• Understand basic components of spectroscopic instruments and their functions.	
	• Know about measurements of atomic/molecular spectra using spectrometers.	
Unit	Contents	Hours
	Introduction to Lasers	
	• Ordinary light and Lasers, Interaction of radiation with matter, Energy levels,	
Unit I	• Population inversion, Population density, Boltzmann distribution, Transition	08
Omt 1	Lifetimes, Allowed and Forbidden Transitions, Stimulated Absorption,	Vo
	• Spontaneous Emission and Stimulated Emission, Einstein's Coefficients, Einstein's	
	relations	
	Laser Action	
	• Directionality, Monochromaticity, Coherence, Brightness, Condition for large	
Unit II	stimulated emission, Population inversion Condition for light amplification,	07
	• Gain coefficient Active medium, Metastable states Pumping schemes: three levels	
	and four levels. Characteristics of laser.	
	Types of Laser	
	• Ammonia maser, Nitrogen laser, Excimer laser, Dye laser, Ruby laser, Nd-YAG	
Unit III	laser,	08
	• Diode – pumped solid state lasers,	
	• Semiconductor lasers, Liquid Lasers: Tunable dye laser, High power laser systems.	
	Application of Laser	
	• Ultra high resolution spectroscopy with lasers and its applications, Propagation of	
Unit IV	light in a medium with variable refractive index, Optical fibers, Light wave	07
	communication,	•
	• Qualitative treatment of medical and engineering applications of lasers, Material	
G: 7	processing.	
Study	• B. Laud, (1991)Laser and Non-linear optics, Wiley Eastern Ltd.,.	
References	• A.K. Ghatak and K. Thyagarajan, (1991)optical electronics, Cambridge University	
	Press.	
	• S.C Gupta Optoelectronic devices and systems, Prentice Hall of India.	
	• (WH) Wilson and Hawkes: Optoelectronics, Prentice Hall of India.	
	• Yariv, (1997), Optical Electronics in Modern Communications, Oxford University	
	Press	
	• Laser Spectroscopy- Basic concepts and instrumentation by Demtroder (ed. 3,	
	Springer)	
	• Avadhanulu M. N. (2001) An introduction to Lasers – theory and applications, S. Chand and Co. New Dolbi, ISBN 0788121020711	
	Chand and Co. New Delhi, ISBN 9788121920711	

T.Y. B.Sc. Physics (Elective) Semester-V PHY-DSE-351B: Forensic Physics

Course	• To identify and analyze forensic problems using standard method based on scientific approach.		
objectives	• To apply ethical principles and commit to professional ethics, responsibilities and norms of		
	forensicpractices.		
	• To understand and analyze the impact of forensic solutions to the society and criminal justice		
	setup.		
	• To design novel solution of regular or complex problem based on study outcomes.		
Course	After successful completion of this course, students are expected to:		
outcomes	• Understand basic concepts of crime, criminology, victimology and forensics.		
	• Understand the causes of vehicle accidents and to analyze it.		
	• Understand the phenomenon of crime scene photography and perform case study.		
	 Analyze and examine the weapons used in crime. 		
T1:4		Harring	
Unit	Contents	Hours	
Unit I	 • Definition of photography, basic concepts of videography, Basic principles and techniques of Black & White and colour photography. Cameras and its working, attachments of camera, types of camera lenses Image sensors, spectral sensitivity of photographic materials, • Working of Camera, Developing and Printing, Digital photography and advanced Crime scene and Laboratory photography, forensic application, Case studies. 	08	
	Ballistics		
Unit II	 Introduction to Ballistics, Types of ballistics:internal, external and terminal Ballistics, Velocity recoil, Theory of recoil, Barrel pressure measurement, Ballistic coefficient, Angle of elevation of the barrel, Bullet and its types, Shotgun slugs 	07	
	Investigation of Vehicular Accidents-		
I Init III	 Primary causes of road accident, Types of road accident, Tire and other marks, Pedestrian impacts and vehicle speed, vehicle condition, vehicle speed and damage, Types of skid marks, curved scuffmarks, speed estimation from skid/scuffmarks. Time and distance, reaction time and peripheral vision of a driver, Photography and plans, Brake system and Steering failure, Motor vehicle examination. 	08	
	Crime Scene Evidence		
Unit IV	 Classification of crime scene evidence – physical and trace evidence. Locard principle. Collection, labeling, sealing of evidence. Hazardous evidence. Preservation of evidence. Reconstruction of crime scene. Soil- types of soil, Composition and color of soil, Forensic examination, Interpretation of evidence. 	07	
	 Fiber analysis: Types offabrics, Yarns, Fabric construction, Fabric characteristics, Microscopy characteristic, Fluorescence Microscopy, Chemical properties, Voice/Tape Authentication: Introduction to human Voice, Nature of voice and production of speech, perception of voice and speech 		
Study	• B. Laud, (1991)Laser and Non-linear optics, Wiley Eastern Ltd.,.		
References			
	• (WH) Wilson and Hawkes: Optoelectronics, Prentice Hall of India.		

- Yariv, (1997)Optical Electronics in Modern Communications, Oxford University Press.
- Demtroder, 3rd Edition Laser Spectroscopy- Basic concepts and instrumentation (Springer)
- Avadhanulu M. N. (2001) An introduction to Lasers theory and applications, S. Chand and Co. New Delhi, ISBN 9788121920711.
- Sirohi R. S. (1995) Experiments with HeNe Laser, 2nd Edition.
- Anuradha De. Optical fibre and Laser Principle and applications, New Age International Publishers, Second edition. 2009, ISBN 10: 8122421393 ISBN 13: 9788122421392.

T.Y. B.Sc. Physics (Elective) Semester-V PHY-DSE-352A: Practical on Laser Physics

Course	• To develops the students practical and technical skills required for	Physics
Objectives	experimentation.It develops student logical thinking, skill for collecting, analysis and extracting	relevant
	information from experimental outcomes.	Televant
	• To give basic understanding regarding basic concepts LASER and it applications.	
C	Understand the principles of gas laser and laser characteristics	
Course Outcomes	After successful completion of this course, students are expected to: • Students will understand the concept of LASER and its applications as	well as
	fundamental concepts related to optics.	wen us
	• It develops student's skill for handling sophisticated and sensitive instrumentation	
	• It develops deeper understanding of phenomenon related to optics such as difference, polarization and properties and application of LASER.	ffraction,
	 The students will also able to work effectively and safely in the laboratory environments. 	ironment
	independently and as well as in teams.	
Sr. No.	Contents	Hours
1	To determine diameter of a given wire by diffraction.	4
2	Verification of Brewster"s law of polarization using He-Ne laser	4
3	To determine the wavelength of a LASER source using an engraved scale as a reflecting diffraction grating.	4
4	Measurement of reflectivity and transferability of thin film by using He-Ne laser.	4
5	To verify Heisenberg uncertainty principle using He-Ne laser source.	4
6	Measurement of Refractive Index of Liquids using Laser	4
7	Measurement of laser parameters.	4
8	Laser interferometer to find the wavelength.	4
9	Refractive index of the given materials	4
10	Refractive index of the Air at different pressure.	4
11	Semiconductor lasers- Study of output characteristics and determination of threshold current, differential quantum efficiency and divergence.	4
12	Wavelength and Particle Size Determination	4
13	Measurement of Refractive Index of Liquids Using Laser	4
14	Determination of circular aperture of LASER	4
15	Determination of wavelength of He Ne Laser by transmission grating	4
16	Beam divergence of diode LASER	4
17	Measurement of focal length of given convex lens using a laser	4
18	Study of characteristics of LASER Beam	4
Study References	 Michelson Interferometer Advanced Practical Physics -Worsnop and Flint Analysis of sodium spectrum a Atomic spectra- H.E. White b Experiments in modern Physics – Mellissinos h/e by vacuum photocell a Advance practical Physics - Worsnop and 	

FlintbExperiments in modern Physics – Mellissinos

- Study of He-Ne laserMeasurement of divergence and wavelength a A course of experiments with Laser Sirohi b Elementary experiments with Laser G. White
- Susceptibility measurement by Quincke's method /Guoy's balance method Advance practical Physics Worsnop and Flint
- Absorption spectrum of specific liquids Advance practical Physics Worsnop and Flint
- Coupled Oscillations HBCSE Selection camp 2007 Manual

*Mandatory to perform any 12 practical from above.

T.Y. B.Sc. Physics (Elective) Semester-V

PHY-DSE-352B: Practical on Forensic Physics

Course Objectives	• To develop the student practical and technical skills required for forensic experimentation.	Physics
	• It develops student logical thinking, skill for collecting, analysis and extracting relevant information from experimental outcomes.	
	To give basic understanding regarding basic concepts science in forensics.	
	• To design novel solution of regular or complex problem based on study outcomes	
Course	After successful completion of this course, students are expected to:	
	• Students will understand the concept of forensic Physics and its applications	in crime
	investigation.	0111110
	• It develops student's skill for handling sophisticated and sensitive instrumentation.	
	• It develops deeper understanding of phenomenon related to optics, ballistics,	vehicle
	accident, etc.	
	• It develops students skill of analyze and examine the weapons used in crime.	
Sr. No.	Contents	Hours
1	Standard operation procedure for Vernier caliper, micrometer screw and travelling	4
	microscope.	7
2	Study of road design and road measurements	4
3	Examination of tire/other marks	4
4	Physical examination accidental vehicle.	4
5	Peripheral vision measurement.	4
6	Side wall information of tire	4
7	Analysis of accident/crime scene photography	4
8	Physical examination of accidental vehicle.	4
9	Trajectory simulation (sample calculations).	4
10	Remaining velocity (sample calculations).	4
11	Determine the thickness of thin foil using air wedge.	4
12	Sample calculations of radioactive dating to determine time of death.	4
13	35 mm Film SLR CameraA. Understanding Parts, Functions and Operation.B. Understanding the concepts: Exposure, ISO, Shutter Speed, F-Stops, Depth of Field, and Focus.	4
14	35 mm digital SLR Camera A. Understanding Parts, Functions and Operation. B. Understanding Close Up/Mid-Range/Overall Photographs.	4
15	Evidence photography by Digital camera.	4
16	Study of forensic sample under stereomicroscope.	4
17	Sample calculations- application of collision theory to accidental cases.	4
18	Sample calculations- velocity of freely falling bodies in air and ponds.	4
19	Photography of 3-D /2- D shoe/bear foot prints.	4

20	Casting of 3-D Shoeprint using plaster of Paris/dental stone in mud or clay.	4
21	Footwear sizing.	4
22	Examination of Fire Arm according to Arms Act 1	4
23	Dismantling and assembling of firearms	4
	Michelson Interferometer Advanced Practical Physics - Worsnop and Flint	
References	 Analysis of sodium spectrum a Atomic spectra- H.E. White b Experiments in modern Physics – Mellissinos. 	
	 h/e by vacuum photocell a Advance practical Physics - Worsnop and Flint b Experiments in modern Physics - Mellissinos 	
	• Study of He-Ne laserMeasurement of divergence and wavelength a A course of experiments with Laser - Sirohi b Elementary experiments with Laser G. White	
	 Susceptibility measurement by Quincke's method /Guoy's balance method Advance practical Physics - Worsnop and Flint. 	
	 Absorption spectrum of specific liquids Advance practical Physics - Worsnop and Flint. 	
	• Coupled Oscillations HBCSE Selection camp 2007 Manual	

^{*}Mandatory to perform any 12 practical from above.

T.Y. B.Sc. Physics (Vocational) Semester-V

Total Hours: 30

PHY-VSC-351: Renewable Energy

Credits: 2

	Total Hours: 30 Credits: 2	
Course	• To develope the recource in Renewable Energy sector is the present need of the country.	
Objectives	• To provide Physics students with an introduction to energy systems and renewable	energy
	resources.	
	• To explore society's present needs and future energy demands; it will examine conve	ntional
	energy sources and systems.	
	• To help create self-employment, promote research and help develop the skills required	in the
	energy sector	
Course	After successful completion of this course, students are expected to:	
Outcomes	 To find exact need of energy and use it accordingly. 	
	 To use available energy sources charily. 	
	 To use available energy sources charry. To generate and use renewable and sustainable energy. 	
	•	
T T •	Develop different energy devices.	
Unit	Contents	Hours
	Energy Sources& Availability	
	• Introduction to Renewable Energy Sources: Sun, Wind, Hydropower, Biomass and	
Unit I	Geothermal energy sources,	05
	• Introduction to Non-renewable Energy Sources: Fossil fuel, coal, Natural gas and Nuclear	0.5
	energy,	
	• An overview of developments in offshore.	
	Solar energy	
	• Solar energy, its importance, storage of solar energy, solar pond, non-convective solar	
Unit II	pond, applications of solar pond and solar energy, solar water heater, flat plate collector,	08
Omt H	solar distillation, solar cooker, solar green houses,	00
	• solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV)	
	systems, PV models and equivalent circuits, and sun tracking systems.	
	Other Energy Sources	
	• Wind Energy: Introduction to wind energy, Atmospheric circulations, Factors influencing	
	wind, Variation of wind speed with height and time, Wind energy conversion principles,	
	Components of wind energy Conversion Systems (WECS), Classification of WECS, Wind	
Unit III	Turbine Aerodynamics.	09
	• Ocean Energy: Ocean Energy Potential against Wind and Solar, Tide characteristics and	
	Statistics, Tide Energy Technologies, Ocean Thermal Energy,	
	• Hydro Energy: Hydropower resources, hydropower technologies, environmental impact	
	of hydro power sources. Bio-mass. Geothermal Resources, Geothermal Technologies.	
	Energy audit and Growing Economy	
	• Energy Audit Concepts: Need of Energy audit, Types of energy audit, Energy management	
	(audit) approach, understanding energy costs, Bench marking, Energy performance,	
	Matching energy use to requirement, SMaximizing system efficiencies, Optimizing the	
***	input energy requirements, Duties and responsibilities of energy auditors, Energy audit	00
Unit IV	instruments, Procedures and Techniques.Commercial energy production, Final energy	08
	consumption,	
	• Energy needs of growing economy, Long term energy scenario,	
	• Energy pricing, Energy sector reforms, Energy conservation and its importance,	
	• Energy strategy for the future, Energy Conservation Act-2001 and its features.	
Study	• G.D Rai (2004) Non-conventional energy sources Khanna Publishers, New Delhi.	
Resources	• M P Agarwal (2021) Solar energyS Chand and Co. Ltd.	
	• S.P.Sukhatme, J. K. Nayak (2017) 4 th Edition Solar energyTata McGraw-Hill Publishing	
	Company Ltd.	
	• Godfrey Boyle, (2004) "Renewable Energy, Power for a sustainable future", Oxford	
	- Godfiey Boyle, (2004) Kenewable Energy, Fower for a sustainable future, Oxford	<u> </u>

University Press, in association with The Open University.

- Dr. P Jayakumar (2009) Solar Energy: Resource Assesment Handbook.
- Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala (2010) Fundamentals And Applications Of Renewable Energy, McGraw Hill, ISBN-13 978-9390385638.
- J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).

T.Y. B.Sc. PHYSICS (Vocational) Semester-V

PHY-VSC-352: Practical on Renewable Energy

Course	■ To take an Operational experience on solar energy kits/set-ups.	
Objectives	■ To study I-V characteristic of Mono-Crystalline, Poly-Crysta	alline PV
	module&observeenergy band gap of semiconductor.	
	■ To study illumination using Lux meter& shadow analysis at a given site.	
	■ To study working principles & various parameters of different renewable energy	conversion
C	systems.	
Course Outcomes	After successful completion of this course, students are expected to:	
Outcomes	• Understand importance of energy and prefer to switch for renewable energy.	
	Understand solar parameters like Isc, Voc& FF.Working principle of different energy source plants.	
	 Working principle of different energy source plants. Use various combination of solar panels circuits. 	
Sr. No.	Contents	Hours
1	Study of solar photovoltaic module.	4
2	To demonstrate the I-V and P-V characteristics of PV Module.	4
3	To determine of the Energy Band Gap of Germanium Diode.	4
4	To show the effect of variation in tilt angle on PV module power.	4
5	To study the thermal performance of a Box-Type Solar Cooker and determine F1 & F2.	4
6	To study the thermal performance of a Box-Type Solar Cooker (a) with air and (b) with water.	4
7	To demonstrate the effects of radiant energy on LDR & to show how radiant energy on LDR can be used to control electronic circuits.	4
8	Study I-V characteris cs of solar panel at different tilt angles	4
9	Evaluate UL (Heat loss coefficient) of solar thermal kit in thermo-symphonic mode of flow with fixed input parameters.	4
10	To measure the effect of shading on PV module output power for the given module.	4
11	To build, simulate, and analyze solar PV energy system using MATLAB under loaded conditions, and to understand the characteristic of solar PV energy system tem	4
12	To build, simulate, and analyze wind energy power system using MATLAB under loaded conditions, and to understand the characteristic of wind energy power system.	4
13	To draw the I-V and P-V characteristics of PV module with varying radiation and Calculate the fill factor for the given module.	4
14	To evaluate the cut-in speed of wind.	4
15	To evaluate the Tip Speed ratio (TSR) at different wind speeds.	4
16	To prepare heat balance sheet for a given Boiler.	4
Study Resources	 V V N Kishore, Renewable Energy Engineering And Technology Principles and Practice, Teri Press, ISBN 9788179932216 Travis Bradford (2006), Solar Revolution: The Economic Transformation of the Global Energy Industry, Mit Pr. ISBN-13 978-0262026048 	
	■ Chetan Singh Solanki (2008) Renewable Energy Technologies: A Practical	

Guide for Beginners, Prentice Hall India Learning Private Limited.	
D. P. Kothari, K. C. Singal, 2 nd Edition Rakesh Ranjan, Renewable Energy	7
Sources And Emerging Technologies, ISBN 9788120344709, Prentice Hal	
India Learning Private Limited.	

^{*}Mandatory to perform any 12 practical from above.

T.Y. B.Sc. Physics (On Job Training) Semester-V

PHY-OJT-351: On Job Tranining/Internship

Total Hours: 120 Credits:4

Course	To provide the students with actual work experience
objectives	To make aware prescribe standards and guidelines at work
	To develop the employability of participating student
	To avail an opportunities to eventually acquire job experiences
Course	After successful completion of this course, students are expected to:
outcomes	• Get actual work experience with office and virtual exposure to various management styles, technical, industrial, and procedural systems
	Acquaintthe knowledge related to working hours, work protocols and guidelines
	• Understand the roles and responsibilities of employee as well as team work
	• Justify job experiences that match their potentials, skills, and competencies

Internship

An internship is a professional learning experience that offers meaningful, practical work related to a student's field of study or career interest. An internship gives a student the opportunity for career exploration and development, and to learn new skills.

On the job training

On the job training is a form of training provided at the workplace. During the training, employees are familiarized with the working environment they will become part of. Employees also get a hands-on experience using machinery, equipment, tools, materials, etc.

Internship / OJT Mechanism:

- 1. **Pre-Approval**: Students should seek approval from the college before starting the Internship / OJT. This ensures that the Internship / OJT aligns with the curriculum and meets the necessary criteria.
- Mentor and Supervisor: Each student should have an assigned mentor at the organization/industry
 where they are interning. Additionally, anInternship / OJT supervisor from the college will be appointed
 to guide and monitor the progress.
- 3. **Regular Reporting:** Students should maintain regular communication with their supervisor and mentor, providing progress reports and seeking feedback.
- Professional Conduct: Students must adhere to professional conduct throughout the Internship / OJT, including punctuality, respect for colleagues, and adherence to the organization's/industry's policies and guidelines.
- 5. **Student Diary**: Students should maintain a diary to document their experiences, challenges faced, and lessons learned during the Internship / OJT.
- 6. **Final Report**: At the end of the Internship / OJT, students should submit a comprehensive final report, summarizing their accomplishments, contributions, and key takeaways.
- 7. **Evaluation**: The Internship / OJT is worth 4 credits (equivalent to 100 marks), and the evaluation will be divided into two categories: one by the mentor and the other by the Internship / OJT supervisor. The mentor's evaluation (internal examination) will carry 40 marks, and it will be based on the student's performance during the Internship / OJT. External examination will be conducted by mentor and supervisor which will be based on the student's diary, the final report prepared by the student, and their performance in the final viva voce, and will carry60 marks. The total marks obtained by the students in both evaluations will be added together for the purpose of final evaluation. The evaluation of the students will be conducted by the mentor using the evaluation sheet provided by the college.

Internal Evaluation Criteria for Students by the Mentor:

1. **Quality of Work** (10 marks): How well did the student perform their assigned tasks during the Internship / OJT? Evaluate the accuracy, thoroughness, and attention to detail in their work.

- 2. **Initiative and Proactiveness**(10 marks): Did the student show initiative in taking on additional responsibilities or tasks beyond their assigned role? Did they demonstrate a proactive attitude towards problem-solving?
- 3. **Communication Skills** (10 marks): Assess the student's ability to communicate effectively with colleagues, superiors, and clients (if applicable). Consider both written and verbal communication.
- 4. **Problem-Solving SkillsandTime Management** (10 marks): Evaluate the student's ability to analyze problems, propose solutions, and implement effective strategies to overcome challenges. How well did the student manage their time during the Internship / OJT? Were they able to meet project deadlines and handle multiple tasks efficiently?

External Evaluation Criteria for Students by the Supervisor and Mentor:

- 1. **Student Diary** (15 marks): Review the student's diary to understand their reflections, insights gained, and self-assessment of their performance during the Internship / OJT.
- 2. **Final Report** (15 marks): Evaluate the quality and comprehensiveness of the student's final report, including the clarity of their achievements and contributions.
- 3. **Presentation of Student in Viva Voce** (30 marks): Evaluate the responses given by the student to the questions asked by the faculty in the Viva Voce.

Evaluation Criteria for Final Viva Voce:

- 1. Presentation Skills
- 2. Knowledge of the Internship / OJT Project
- 3. Practical Application and Work Experience
- 4. Problem-Solving and Critical Thinking
- 5. Communication and Professionalism

SEMESTER-VI

T.Y. B.Sc. Physics (Major) Semester-VI

PHY-DSC-361: Classical Electrodynamics

Total Hours: 30 Credits: 2 Course • To understand different terms related to electrostatics. **Objectives** • To understand the concept polarization, electric field in dielectric. • To understand the different terms related to magnetostatics. ■ To develop the electromagnetic wave equation and study properties of electromagnetic waves. After successful completion of this course, students are expected to: Course • know the need and necessity of electrostatic and the magneto static field. **Outcomes** • Know the basic concepts of electrostatics charges and polarization of dielectric • Learns different phenomenon of magnetostatics, hysteresis and BH curve • Learn about electromagnetic induction, polarization of light. Hours Unit **Contents** Electrostatics • Coulomb's law, Electric field, Electrostatic Potential, Potential energy of system of charges, Electric dipole, Expression for potential due to dipole. Unit I 07 • Statement of Poisson's equation, Laplaceequation and its solution in cartesian coordinate systems, • Gauss law Differential form of Gauss's law, Applications of Gauss's law, • Applications: Electric Field Sensors, Electrostatic Energy Storage, Dipole Antennas. Electrostatic field in dielectrics • Dielectric materials, polar and non -polar molecules, • Polarization P, Electric displacement D, Electric susceptibility and dielectric constant, **Unit II 07** Bound volume and surface charge densities, • Electric field at an exterior and interior point of dielectric. • Applications: Capacitor Design, Dielectric Testing, High-Voltage Insulation. **Magnetostatics** Concepts of magnetic induction, magnetic flux and magnetic field, • Biot-Savart's law, Magnetic induction due to straight current carrying conductor, • Energy density in magnetic field, magnetization of matter, Relationship between B, H and 09 **Unit III** Ampere's law for force between two current carrying loops, Ampere's circuital law, • Equation of continuity, Magnetic susceptibility and permeability, Hysteresis loss, B-H curve. Applications: Magnetic Sensors, Magnetic Storage, Inductive Heating, Magnetic Materials in Motors and Transformers, Magnetic Core Design Electromagnetism • Concept of electromagnetic induction, Faradays law of induction, Lenz's law, displacement current, generalization of Amperes' law. • Maxwell's equations and their physical significance, Unit IV • Linear, elliptical and circular polarization of electromagnetic waves, 07 • Wave equation and plane waves in free space, Poynting theorem & Poynting vector, Microscopic form of ohm's law $(J=\sigma.E)$, Applications: Wireless Power Transfer, Radio Transmission, Optical Fiber Communication, Polarization Filters, Material Conductivity • Capri, A. Z., & Panat, P. V. (2000). Introduction to electrodynamics. Narosa Publishing Study Resources • Griffiths, D. J. (2012). Introduction to electrodynamics (4th ed.). Addison-Wesley. • Gupta, S. L., Kumar, V., & Singh, S. P. (2017). Electrodynamics. Pragati Prakashan. ■ Jackson, J. D. (1999). Classical electrodynamics (3rd ed.). Wiley. • Reitz, J. R., & Milford, J. (2008). Electricity and magnetism (4th ed.). Addison-Wesley.

T.Y. B.Sc. Physics (Major) Semester-VI PHY-DSC-362: Nuclear Physics

Course	 Understand nuclear properties like size, shape, charge, and binding energy 	V.	
Objectives	 Explore nuclear models and decay processes. 		
	• Study nuclear reactions and detection techniques.		
	 Learn elementary particle classification and fundamental forces. 		
	 Develop problem-solving skills in nuclear and particle Physics. 		
Course	After successful completion of this course, students are expected to:		
Outcomes	 Explain nuclear size, mass, spin, isospin, and binding energy. 		
	 Apply nuclear models to predict nuclear properties. 		
	 Analyze nuclear reactions and decay mechanisms. 		
	 Understand elementary particles, conservation laws, and quantum number 	rs.	
	 Solve numerical problems in nuclear and particle Physics. 		
Unit	Contents	Hours	
	Fundamentals of Nuclear Physics		
	■ Introduction to nuclear Physics		
	■ Structure of the nucleus: Nucleons, isotopes, isobars, isotones		
Unit I	 Nuclear size, mass, and nuclear binding energy 	6	
	 Nuclear forces and their properties 		
	• Overview of nuclear models (Liquid drop model, Shell model)		
	■ Numericals		
	Radioactivity & Decay Laws		
	■ Types of radioactive decay (Alpha, Beta, Gamma)		
	■ Radioactive decay laws and kinetics		
Unit II	■ Half-life and decay constant	7	
	 Radioactive decay chains and natural radioactivity 		
	Artificial radioactivity and induced radioactivity		
	■ Numericals		
	Nuclear Reactions & Energy		
	Types of nuclear reactions (Fission, Fusion)		
	 Nuclear fission: Chain reaction, nuclear reactors, power generation 		
Unit III	 Nuclear fusion: Energy production and challenges 	7	
	 Nuclear reactions in stars (Stellar nucleosynthesis) 		
	Semi-empirical mass formula and nuclear stability		
	• Numericals		
	Nuclear Detectors & Applications		
	Principles and types of nuclear detectors (Geiger counters, scintillators,		
	semiconductor detectors)		
	 Working mechanisms and applications of nuclear detectors 		
Unit IV	Applications in medicine (Imaging, therapy)	10	
	 Industrial applications (Material analysis, gauging techniques) 		
	Nuclear energy: Power generation, safety considerations		
	Archaeology & geology (Carbon dating, other dating techniques)		
	 Basics of nuclear weapons: Physics and effects 		
Study	B. Martin, (2011). Nuclear & Particle Physics an Introduction, John Wiley		
Resources	& Sons, Inc., New Jersey, USA.		
	• K.S. Krane, (2008). Introductory Nuclear Physics, John Wiley & Sons,		
	Inc., New Jersey, USA.		

- C.A. Bertulani, (2007). Nuclear Physics in a Nutshell, Princeton University Press, Princeton, USA.
- S.S.M. Wong, (2008). Introductory Nuclear Physics, John Wiley & Sons, Inc., New Jersey, USA.
- K. Heyde, (2004). Basic Ideas and Concepts in Nuclear Physics An Introductory approach, CRC Press, London, U. K.
- B. Povh, K. Rith, C. Scholz, (2012). Particles and Nuclei: An Introduction to the Physical Concepts Springer, New York, USA.
- D.H. Perkin, (2009). Introduction to High Energy Physics, Cambridge University Press, Cambridge, U.K.
- I.S. Hughes, (1991). Elementary Particles, Cambridge University Press, Cambridge, U.K.
- W.R. Leo, (2009). Techniques for Nuclear and Particle Physics Experiments, Springer, New York, USA.
- T. Stefan, (2010). Experimental Techniques in Nuclear and Particle Physics, Springer, New York, USA.
- D.J. Griffiths, (2008). Introduction to Elementary Particles, Wiley-VCH Verlag GmbH, Germany.

T.Y. B.Sc. Physics (Major) Semester-VI

Total Hours: 30

PHY-DSC-363: Quantum Mechanics

Credits: 2

Course Objectives	Understand the historical development and fundamental principles of quantum		
Objectives	mechanics. • Explore wave-particle duality, the De Broglie hypothesis, and Heisenberg's unc	ertaints	
	principle.	Citamity	
	 Study the Schrodinger equation, its physical interpretation, and applications in c 	lifferent	
	quantum systems.		
	 Analyze quantum mechanical operators, commutator algebra, and the concept o 	f parity.	
Course	After successful completion of this course, students are expected to:		
Outcomes			
	electron diffraction.		
	 Apply the Schrodinger equation to different quantum systems such as free particles. 	icles and	
	potential wells.		
	 Demonstrate understanding of quantum operators, eigenvalues, and eigenfunction 		
	• Solve problems related to tunneling, commutator algebra, and quantum me	chanical	
T T 1.	probabilities.	l	
Unit	Contents	Hours	
	Origin of Quantum Mechanics:		
	 Historical Background: Black body radiation, photoelectric effects. 		
	 Matter waves - De Broglie hypothesis. Davisson and Germer experiment Wave particle duality 		
	• Concept of wave function, wave packet, phase velocity, group velocity	0.5	
Unit I	andrelationbetween them	06	
	• Heisenberg's uncertainty principle with Electron diffraction experiment,		
	differentforms of uncertainty.		
	 Different fields of applications of quantum mechanics Problems 		
	The Schrodinger equation		
	Physical interpretation of wave function		
	Schrodinger time dependent equation.		
	 Schrodinger time dependent equation. Schrodinger time independent equation. (Steady state equation). 		
Unit II	Requirements of wave function.	09	
	 Probability current density, equation of continuity, and its physical significance. 		
	 An operator in Quantum mechanics, Eigen function and Eigen values. 		
	Expectation value, Ehrenfest's theorem (Only statements).		
	■ Problems		
	Applications of Schrodinger Steady state equation:		
	• Free particle.		
	• Step potential.		
T1 1/ TTT	■ Potential barrier. (Qualitative discussion). Barrier penetration and tunnelling effect.	10	
Unit III	■ Particle in infinitely deep potential well (one - dimension).	10	
	 Schrodinger's equation in spherical polar co-ordinate system. 		
	Rigid rotator (free axis).		
	■ Problems		
	Operators in Quantum Mechanics		
Unit IV	Hermitian operator.	05	
Omt IV	■ Position, Momentum operator, angular momentum operator, and total energy operator (Hamiltonian).	03	

• Commutator brackets- Simultaneous Eigen functions. Commutator Algebra • Commutator bracket using position, momentum and angular momentum operator • Concept of parity according to quantum mechanics, parity operator and its Eigenvalues. Problems Study • Eisberg, Robert M., and Robert Resnick. Quantum Physics of Atoms, Molecules, Resources Solids, Nuclei, and Particles. Wiley, 1985. ISBN: 9780471873730. Liboff, Richard L. Introductory Quantum Mechanics. Addison Wesley, 2002. ISBN: 9780805387148. Griffiths, David J. Introduction to Quantum Mechanics. Upper Saddle River, Pearson Prentice Hall, 2005. ISBN: 9780131118928 • Feynman, Richard P., Robert B. Leighton, and Matthew L. Sands. The Feynman Lectures on Physics. Addison Wesley, 1989. ISBN: 9780201500646. ■ P M Mathews and K Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill publication, ISBN.: 9780070146174 • N. Zettili, Quantum Mechanics- Concepts and applications, Wiley publication, ISBN: 978-0-470-02679-3 AjoyGhatak, S. Lokanathan, Quantum Mechanics: Theory and Applications, Springer Publication, ISBN 978-1-4020-2130-5

G Aruldhas, Quantum Mechanics, Phi Learning Private Ltd., ISBN: 97881203363
 Shankar, Ramamurti. Principles of Quantum Mechanics. Springer, 2008. ISBN:

Gupta, Kumar & Sharma, Quantum Mechanics, Jai Prakash Nath Publications

9780306447907.

T.Y. B.Sc. Physics (Major) Semester-VI PHY-DSC-364: Atomic Physics

·

Total I	Hours: 30 Credits: 2		
Course	 To impart knowledge of development of structure of atom 		
Objectives	 To understand different types of interaction 		
	■ To understand concept of Zeeman, Stark ,Paschen effect and x-ray.		
	 To provide the knowledge and methodology necessary for solving problems in Ph 	nysics.	
Course	After successful completion of this course, students are expected to:		
Outcomes	Learn the different quantum numbers and its use to specifies quantum state of electrons		
	 Learns about different types of coupling interaction. 		
	 Learns the phenomenon and application of Stark and Zeeman effect. 		
	 Learn to basics of x-ray spectroscopy. 		
Unit	Contents	Hours	
	Atomic Structure		
	Rutherford model of atom, Bohr atom, Electron orbits, Energy levels and		
	spectra (Introductory),		
	 Vector atom model - Concepts of space quantization and electron spin, 		
Unit I	 Quantum numbers, atomic excitation and atomic spectra, 	08	
	■ Pauli's exclusion principle: statement, electronic configuration, quantum state		
	of electrons and spectral notation,		
	 Spectra of single valence electron systems (sodium), 		
	Applications and numericals		
	Two Valence Electron System		
	Introduction, Spin-spin and orbit-orbit interaction, L-S coupling and j-j		
TT:4 TT	coupling, L-S and j-j coupling schemes,	00	
Unit II	 Singlet triplet separations for interaction energy of LS coupling, a p and p d configuration in L. S. coupling and it is coupling. 	08	
	s-p and p-d configuration in L-S coupling and j-j coupling, Londo Interval rule. Spectra of Holium.		
	Lande Interval rule, Spectra of Helium,Applications and numericals		
	Zeeman & Paschen Back effect		
	■ Introduction, Magnetic dipole moment, Zeeman Effect: Experimental set up,		
	 Normal and Anomalous Zeeman Effect for single valence electron system, 		
Unit III	■ Lande 'g' factor for two valence electron system (L-Sand j-j coupling),	08	
	■ Stark effect (Qualitative discussion),		
	 Paschen Back effect for single valence electron system, 		
	 Applications and numerical. 		
	X rayspectra		
	 Origin and nature of X-ray, 		
	■ Characteristic X-ray spectra,		
TI24 TX7	■ Duane and Hunt's Rule, X-ray emission spectra,	06	
Unit IV	Moseley's law and its importance,	06	
	 Regular and Irregular doublets and their laws, Auger effect, 		
	 Applications of X-ray: Cancer Treatment, Security and Screening, Research and 		
	Scientific Analysis.		
Study	■ Banwell, C. N. (2016). Fundamentals of molecular spectroscopy (4 th ed.). Tata		
Resources	McGraw-Hill.		
	Beiser, A. (1969). Perspectives of modern Physics. McGraw-Hill Kogakusha		
	Ltd.		
	■ Ferraro, J. R. (2002). Introductory Raman spectroscopy (2 nd ed.). Elsevier.		
	■ Hertzberg, G. (1979). Spectra of diatomic molecules (2 nd revised ed.). D. Van		
	Nostrand Company. • Kumar, R. (2019). Atomic spectra and molecular spectra (20 th ed.). Kedarnath		
	Ramnath Prakashan.		
	■ White, H. E. (1934). Introduction to atomic spectra (International ed.).		
	McGraw-Hill.		

T.Y. B.Sc. Physics (Major with IKS) Semester-VI

PHY-DSC-365: Physics Behind Historical Monuments

Course	• To develop a rational conceptualization of the Indian Knowledge System.	
Objectives	• To sensitize the students to the contributions made by ancient Indians in the f	ield of
	Science, Philosophy and related applications and concepts.	114
	• To appreciate that the course would help to enhance efficiency, effectiveness,	quanty
	and excellence in the System of Indian Knowledge.	
Course	• To gain insight to conduct research and verify Indian knowledge.	
	After successful completion of this course, students are expected to:	
	Describe the Ancient Indian Concept of Knowledge. Describe the Ancient Indian Concept of Knowledge.	
	• Discuss the importance of Indian Knowledge System in present times.	
	Analyse Indian Society, Culture & Traditions.	
	• Analyse Indian Architecture and Town Planning. xii) Explore the Outreach of	Indian
	Knowledge System.	
Unit	Contents	Hours
	Structural Stability & Load Distribution	
	• Load-bearing structures: Thick stone walls distribute weight	
	efficiently, preventing structural failure.	
	• Arch and dome Physics: Used in some temples to distribute weight	
	evenly and prevent collapse.	
	• Center of gravity: Wide bases in fort bastions lower the center of	
	gravity, increasing stability against external forces like wind and	0.0
Unit I	earthquakes.	08
	• Earthquake resistance: Some structures use interlocking stones and	
	lime mortar, which absorb vibrations and prevent major cracks.	
	• Study places: Gavilgad Fort, Balapur Fort, Markanda Temple, Rajgad,	
	Pratapgad, Jyotirlinga Temples Of Bhimashankar, Kolhapur Mahalaxmi, Trimbakeshwar Temple, Bibi Ka Maqbara, Daulatabad Fort, Ellora	
	& Ajanta Caves, Raigad Fort, Sindhudurg Fort, And Murud-Janjira Fort,	
	Shaniwarwada.	
	Material Science & Thermal Physics	
	• Basalt rock: Most forts use basalt, a volcanic rock that is durable and	
	absorbs minimal moisture.	
	• Laterite stone: Found in temples like this porous rock stays cool in	
	summer due to its ability to store moisture.	
	• Thermal mass effect: Thick stone walls act as thermal insulators,	
Unit II	absorbing heat during the day and releasing it slowly at night, keeping	07
	interiors cool.	
	• Waterproofing techniques: Lime-based mortar, used in forts, has	
	hydrophobic properties that prevent water seepage.	
	• Study places: Sindudurg Fort, Gavilgad, Sinhagad, Prataogad, Shivneri,	
	Mahalaxmi, Shanivarwada, Salher Mulher, Tryambakeshwar, Patnadevi,	
	Daulatabad, Kandhar	
	Acoustics & Sound Engineering.	
	• Echo minimization: Temples use dome-shaped ceilings and specific	
Unit III	placements of columns to control reverberation. Forts has thick walls	08
	that minimize sound leakage, useful for secret military discussions.	
	• Sound amplification: Narrow tunnels and horn-shaped entrances in forts amplify sound allowing defenders to communicate over long	
	forts amplify sound, allowing defenders to communicate over long	

	 distances. The Temple uses specific stone carvings and dome shapes to enhance sound vibrations during chants (resonance). Strategic cannon placements: Some forts had cannon placements designed to use the Doppler effect, making cannon sounds travel farther to confuse enemies. Horn-Shaped Entrances: Used in forts to amplify battle calls and alarms over long distances. 	
	• Study places: Vijaydurg Fort, Narnala, Chikhaldara, Rajgad, Raigad, Pratapgad, Sinhagad, Patnadevi, Songir, Laling Fort, Ajanta, Ellora, Daulatabad, Bibi Ka Maqbara, Mulher Fort, Shaniwarwada	
Unit IV Study Resources	 Aerodynamics & Defense Strategies Wind resistance in caves & cliff-top forts: Structures like are positioned on cliffs with sloped walls to deflect strong winds. Narrow and zigzag entrances: Used in forts these slow down intruders and create pressure differences that make movement harder. Wind tunnels in fortresses: Some forts have slits in walls that allow wind to pass through, reducing air pressure buildup and preventing structural damage. Buoyancy and ship defence: Forts had sea-facing bastions designed to counter the impact of waves using the principles of buoyancy and water resistance. Study places: Gavilgad Fort, Balapur Fort, Raigad Fort, MurudJanjiraPrabalgad,SidudurgVijaydurg, SatpudaHills,Rajgad, Torna, Suvarndurg, Galna Fort, Daulatabad, Naldurg, Ellora, Ajanta Ancient Indian knowledge System of Physics (2024, Dr.Anil Tiwari) ISBN: 9788196931742. A Review of NEP Physics in Context of Vedic Text under Indian Knowledge System (I.K.S), DOI: https://doi.org/10.31305/rrijm.2024.v09.n09.002. Knowledge Traditions & Practices of India (Mathematics) https://cbseacademic.nic.in/web material/Circulars/2012/68 KTPI/Module 7. 	07
	 pdf. The Teachings of Gita: A Guide to Modern world of Technology-Reena Sharma http://biotechjournal.in/images/paper_pdffiles/The-5d3c9fd09a297.pdf. Bhagavad Gita and Modern Life https://www.indianculture.gov.in/ebooks/bhagavad-gita-and-modern-life. METALLURGICAL HERITAGE OF INDIA https://www.tf.unikiel.de/matwis/amat/def_en/articles/metallurg_heritage_india/metallurgic al_heritage_india.html. Indian Foundations of Modern Science Dr. Subhash Kak https://youtu.be/QF2iKJkbYJw. 	

T.Y. B.Sc. Physics (Major) Semester-VI

PHY-DSC-366: Practical on Electrodynamics & Nuclear Physics

Course Objectives	 Understand the working principles and characteristics of radiation detectors. 	ors like
	 Develop skills to measure efficiency, energy resolution, and absorption coef 	ficients
	for different radiation sources.	
	 Explore magnetic and electric field measurements using solenoids, vimagnetometers, and parallel conductors. 	bration
	• Gain hands-on experience with optical experiments, including light transi	mission
	through analyzers.	
Course	After successful completion of this course, students are expected to:	
Outcomes	• Analyze the performance of GM tubes and NaI(Tl) detectors, including eff	iciency
	and energy resolution. Conduct experiments on radiation absorption, decay characteristics, and	activity
	measurement of gamma sources.	activity
	 Measure and interpret electric and magnetic field variations in different setup 	os.
	 Apply optics principles to study light transmission and polarization effects. 	
Sr. No.	Contents	Hours
1	To study the characteristics of GM tube	4
2	To measure efficiency and energy resolution of a NaI(Tl) detector.	4
3	To determine the efficiency of GM counter for beta particles.	4
4	To determine energy of a given gamma-ray source by calibration method.	4
5	To study various operations of 1024 channel analyzer and to calculate energy resolution, energy of gamma ray, area under photopeak etc.	4
6	To study beta-ray spectrum of Cs-137 source and to calculate binding energy of K-shell electron of Cs-137.	4
7	To determine and compare the linear absorption coefficient of gamma radiation for different metals.	4
8	To determine the efficiency of GM counter/NaI(Tl) detector for different energy gamma radiations	4
9	To determine activity of a given gamma-ray source using radiation monitor	4
10	To determine resolving/dead time of a GM counter by double source method.	4
11	To determine resolving time of a coincidence using chance coincidence technique	4
12	To determine electric field between parallel conductors	4
13	Measurement of field strength B and its variation in a Solenoid (determine dB/dx)	4
14	To Study of magnetic field by vibration magnetometer.	4
15	To determine magnetic susceptibility of FeCl3	4
16	To determine the relation between intensity of transmited light through	

	analyzer
Study Resources	S. S. Kapoor and V. S. Rmanurthy. (1986) Nuclear radiation detectors, (Wiley Eastern Limited, New Delhi,).
	J. Sabol and P. S. Weng (1995) Introduction to radiation protection dosimetry, (World Scientific),.
	W. R. Len (1955) Techniques for nuclear and particle Physics, (Springer),.
	• K. Sriram, (1986) Nuclear Measurement Techniques, (Affiliated East-West Press, New Delhi),.
	Leonard C. Feldman and James W. Mayer, (1988) (North Holland, New York).
	K. Sriram and Y. R. Waghamare, (1991) Introduction to nuclear science and technology, (A. M. Wheeler).
	■ W. J. Price (1964)Nuclear radiation detection, (McGraw-Hill, New York),.
	■ K. Siegbahn, (1965.) Alphas, beta and gamma-ray spectroscopy,(North Holland, Amsterdam),
	R. M. Singru, (1974) Introduction to experimental nuclear Physics, (John Wiley and Sons).
	■ Willaim R. Hendee, (1973) Radioactive isotopes in biological research, (John Wiley and Sons).
	Satendra Sharma, (2008) Atomic and Nuclear Physics, Pearson Education.

*Mandatory to perform any 12 practical from above.

T.Y. B.Sc. Physics (Major) Semester-VI

PHY-DSC-367: Practical on Quantum Mechanics & Atomic Physics

Course	• Understand fundamental quantum mechanical concepts through experi	mental
Objectives	verification.	momai
	Explore the properties of light and matter interactions, including photoelectrics	
	effect, diffraction, and absorption spectra. • Study atomic and molecular spectra to verify theoretical principles li	ko tho
	Rydberg formula and energy band gaps.	Ke the
	 Apply magnetic and electrical measurement techniques to determine pro 	perties
	like e/m ratio and magnetic susceptibility.	
Course Outcomes	After successful completion of this course, students are expected to:	
Outcomes	 Determine fundamental constants like Planck's constant, Stefan's constant the energy band gap of semiconductors. 	nt, and
	 Experimentally verify key quantum phenomena, including the photoe 	electric
	effect, tunneling, and atomic spectra.	
	Analyze optical properties using diffraction, refraction, and transn	nission
	experiments with lasers and prisms. • Measure and interpret magnetic properties of materials using method	la lika
	Quinck's method.	18 116
Sr. No.	Contents	Hours
1	To determine the Planck constant using Photocell (Filters)	4
2	To determine the Planck constant using Different LED Lights	4
3	To Studies the Photoelectric Effect and Work function.	4
4	To determine the Stefan constant and to understand the Black body radiation	4
5	To determne the stimulated emission of radiation based on Quantum princples using He-Ne Laser.	4
6	To show the Tunneling effect using I-V Characteristics	4
7	To Study the Atomic clock.	4
8	To study the Diffraction using compack Disk and He-Ne Laser.	4
9	To determine the Wavelength of Laser light using slit & Double slits Experiment.	4
10	To calculate e/m using Thomson method.	4
11	To study of Absorption emission spectra usig Mercury lamp.	4
12	To study of Absorption emission spectra usig Sodium lamp.	4
13	To study the emission spectrum of hydrogen and verify the Rydberg formula.	4
14	To determine the Energy Band Gap of Semiconductor diode (Ge)	4
15	To determine the Refractive Index using hollow Prism	4
16	To determine Magnetic Susceptibility of given Paramagnetic liquid using Quinck's method.	4
17	To record the Transmitted spectrum of Potassium per magnetic material and to measure absorbance coefficient.	4
Study Resources	Beiser, A. (2003). "Concepts of Modern Physics" (6th ed.). McGraw-Hill.	
	Eisberg, R., & Resnick, R. (1985). "Quantum Physics of Atoms,	Do co. 4

- Molecules, Solids, Nuclei, and Particles" (2nd ed.). Wiley.
- Griffiths, D. J. (2018). "Introduction to Quantum Mechanics" (3rd ed.). Cambridge University Press.
- Melissinos, A. C., & Napolitano, J. (2003). "Experiments in Modern Physics" (2nd ed.). Academic Press.
- Hecht, E. (2016). "Optics" (5th ed.). Pearson.
- Pedrotti, F. L., Pedrotti, L. S., & Pedrotti, L. M. (2017). "Introduction to Optics" (3rd ed.). Cambridge University Press.
- Banwell, C. N., &McCash, E. M. (1994). "Fundamentals of Molecular Spectroscopy" (4th ed.). McGraw-Hill.
- Demtröder, W. (2014). "Laser Spectroscopy: Basic Concepts and Instrumentation" (5th ed.). Springer.

*Mandatory to perform any 12 practical from above.

PHY-DSE-361A: Advanced Electronics

Course	 To understand the basic concepts of analog and digital electronics 	
objectives	 To learn differential amplifier and its applications. 	
	 To learn operational amplifier & oscillator circuits in detail. 	
	• To acquire the basic knowledge of counters & data processing circuits used in	digital
	electronics.	
Course	After successful completion of this course, students are able to:	
outcomes	 Understand and analyze the IC 741 operational amplifier and its characteristics. 	
	■ Design the solution for linear & non-linear applications using IC741.	
	 Design & built oscillator for various applications. 	
	• Use counters multiplexer, demultiplexer, encoder, decoder in various applications.	
Unit	Contents	Hours
	Differential Amplifier:	
Unit I	 Introduction, black box concept, basic circuit of differential amplifier, 	05
Omt 1	• Need of constant current source in differential amplifier, different configurations of	03
	differential amplifier, CMRR.	
	Operational Amplifier and its applications:	
	■ Block diagram, Schematic symbol and Pin diagram of IC 741, Important	
	parameters of OPAMP such as Input impedance, output impedance, input offset	
	voltage, open loop voltage gain, input bias current, slew rate.	
Unit II	• Ideal and practical parameters of Op-Amp, Concept of virtual ground, inverting and	09
	non-inverting amplifier with gain expressions, off-set null, frequency response of	
	operational amplifier,	
	• Applications: Adder, Substracter, Integrator, Differentiator, Comparator,	
	logarithmic amplifier, schmitt trigger, precision rectifier.	
	Oscillators:	
Unit III	Principle of feedback oscillators, Tuned collector oscillator, Colpitt's oscillator,	07
	Hartley oscillator, Phase shift oscillator, Wien bridge oscillator, Crystal oscillator.	
	Digital Electronics:	
	• Flip flops (RS, JK, D, T), Shift Registers and Types of Shift Registers.	
T1:4 TX7	• Counters: Types of counters (Asynchronous and Synchronous), 4-bit Asynchronous	00
Unit IV	up counter (Serial counter), Ring Counter, Ripple Counter, modulus of counter, Decade Counter.	09
	■ Data Processing circuits: Multiplexer (4 to 1 line), De-multiplexer (1 to 4 line),	
	Decoder, Encoder.	
Study	 Malvino A. P., (2007), Electronic Principles, 7thedition, Tata McGraw - Hill, New 	
References	Delhi.	
Telef clices	 Mottershead A., (1973), Electronic Devices & Circuits: An Introduction, Goodyear 	
	Publishing Company,	
	 Malvino L., (2006), Digital Principles and Applications, 6thedition, Tata McGraw – 	
	Hill, New Delhi	
	Jain R.P., (2009), Modern Digital Electronics, 4thedition, McGraw Hill Education	
	Clayton B.G., (1979), Operational Amplifier, 2ndedition, Butterworth-Heinemann,	
	Elsevier.	
	• Gaikwad R.A., (1983), Operational Amplifier & Linear Integrated Circuits, 4th	
	edition, Pearson.	

PHY-DSE-361B: Introduction to Atmoshperic & Space Sciences (NPTEL Course code:noc25-ph-13)

Course		
01.	To understand the fundamental of atmosphere and space.	
o sjeet ves	To study different scientific aspects of atmosphere.	
	■ To understand detail ionosphere.	
	To study about curvature and gradient drifts of spatial body.	
Course	After successful completion of this course, students are expected to:	
Outcomes	Know about fundamental of atmosphere and stellar system.	
	Know key role of atmospheric layers to deal with space objects.	
	 Learn about different thermodynamical phenomenon related to space. 	
	 Undertand plasma and its existance in the universe. 	
Unit	Contents	Hours
Unit I	■ Atmospheric evolution, solar radiation, present day atmospheric constituents, various stages in the evolution of earth's atmosphere, formation of ozone, carbon budget, oxygen chemistry and life on earth, Variation of temperature with height, density and ionization with altitude, ■ classification of atmosphere based on temperature and pressure, hydrostatic equation, hypsometric equation, : Fundamental forces, non-inertial forces, momentum equations governing the motions in atmosphere, curvature effect, various scales of atmospheric motions. Thermodynamics Aspects of Earth's Surface ■ Hydrostatic equilibrium, hypsometric equation, geopotential height,	08
Unit II	 Hydrostatic equinorium, hypsometric equation, geopotential height, thermodynamic system, equilibrium state, stability, gas laws, Avogadro hypothesis, gas constant, dry air, mixture of gases, mean molecular mass, Humidity variables, moist air, virtual temperature, Enthalpy, adiabatic processes, air parcel, mixing ratio and specific humidity, saturation vapor pressure, relative humidity, dew point, frost point, lifting condensation level, wet-bulb temperature, latent heat, Pseudo-adiabatic processes, equivalent potential temperature, parcel lapse rates, convection of air, Collision and coalescence processes, cloud formation, ascent of clouds and types, cloud morphology, cloud classification 	06
Unit III	 Study of Ionosphere Atmospheric stability conditions, Brunt-vaisala frequency, stable, unstable and neutral atmosphere, Cloud seeding and precipitation, Droplet growth, curvature effect and solute effect, radial growth of droplets by diffusion, Earth's upper atmosphere, Ionosphere, various layers and chemistry of ionosphere, types of reactions, Chapman's theory of layer production, Hydrogen in ionosphere, 	07
Unit IV	 Electromaagnetic fields Debye's shielding and Debye's potential, Particle motion in uniform electric field, particle motion in uniform magnetic field and guiding center, particle motion in gradient magnetic fields, Gradient drift and curvature drift, vacuum drift and planetary ring 	09

	current, magnetic mirroring and loss cone, airglow and aurora.
Study	■ Houghton, J. T. (2002) The Physics of Atmospheres, Cambridge
Resources	University Press, ISSN 0521011221, 9780521011228.
	Gombosi, T. I. (2009) Physics of the Space Environment,
	https://doi.org/10.1017/CBO9780511529474.
	• Kivelson, M. G., & Russell, C. T. (1995) Introduction to Space Physics,
	Cambridge University Press.
	Schunk, R. W., & Nagy, A. F. (2018) 2 nd Edition, Ionospheres: Physics,
	Plasma Physics, and Chemistry, Cambridge University Press.
	■ Parker, E. N. (1963) Interplanetary Dynamical Processes, Interscience
	Publishers, ISSN-10 0470659165.

PHY-DSE-362A: Practical on Advanced Electronics

Course	■ To design and analyze the basic applications of the linear IC, mainly the op-amp	1
	■ To learn about basic op-amp configurations and various application circuits.	
	■ To learn about the formation of oscillators.	
	■ To learn about concept advanced of digital electronics like flip flops, registers,	counters.
	multiplexers and demultiplexers.	, ,
Course	After successful completion of this course, students are expected to:	
	■ Understand and Design circuits using Analog IC.	
	■ To design the Op-Amp as adder, subtractor, differentiator & integrator.	
	■ To design test the OP-Amp as oscillators.	
	■ To study and design advanced digital circuits like flip flops, registers,	counters,
	multiplexers and demultiplexers.	
Sr. No.	Contents	Hours
1	Design and verify a precision full wave rectifier. Determine the performance parameters.	4
2	Designing of an amplifier of given gain for an inverting and non-inverting	4
_	configuration using an op-amp.	'
3	Design and verify the output waveform of an op – amp RC phase shift	4
	oscillator for a desired frequency	
4	Design and realize Schmitt trigger circuit using an op – amp for desired upper	4
-	trip point (UTP) and lower trip point (LTP).	
5	Design and verify the operation of op – amp as an adder	4
6	Design and verify the operation of op – amp as a substractor.	4
7	Design and verify the operation of op – amp as an integrator.	4
8	Design and verify the operation of op – amp as a differentiator.	4
9	Study of log amplifier.	4
10	To study decade counter using IC 7490.	4
11	To build and test Shift Register (serial-in and serial-out) using D-type/JK Flip-Flop ICs.	4
12	To build and test Counter using D-type/JK Flip-Flop ICs and study timing diagram	4
13	To build and test Flip-Flop (Clocked RS, D-type) circuits using NAND gates.	4
14	Study of 4-1 line multiplexer.	4
15	Study of 1-4 line de multiplexer.	4
Study	■ Gayakwad R.A., (2003), Op-Amps and Linear IC's, Pearson.	
_	Operational Amplifiers & Linear ICs, David A. Bell, Oxford University Press	
	3rd Edition 2011.	
	■ Operational Amplifiers: Theory and Practice Second Edition Version 1.8.1	
	James K. Roberge Kent H. Lundberg Massachusetts Institute of Technology April 19, 2007	
	■ Education.1.Electrical Circuits, M. Nahvi and J. Edminister, Schaum's	
	Outline Series, Tata McGraw-Hill (2005)	
	■ Networks, Lines and Fields, J.D.Ryder, Prentice Hall of India	
	•	l l

- J. Millman and C. C. Halkias, Integrated Electronics, Tata McGraw Hill (2001) 4. Allen Mottershead, Electronic Devices and Circuits, Goodyear Publishing Corporation.
- Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., (2011) Tata McGraw
- R. L. Tokheim, Digital Principles, Schaum's Outline Series, Tata McGraw-Hill (1994)
- Digital Electronics, S.K. Mandal (2010) 1st edition, McGraw Hill

^{*}Mandatory to perform any 12 practical from above.

PHY-DSE-362B: Practical on Atmospheric & Space Sciences

Total Hours: 60 Credits: 2

Course	To understand atmospheric dynamics.	
Objectives	 To understand atmosphere dynamics. To explore Earth's atmosphere and Ionosphere. 	
Objectives	 To explore Earth's atmosphere and follosphere. To study effect of Sun radiation on Earth surface. 	
	To study effect of EM field on object mass.	
Course	After successful completion of this course, students are expected to:	
Outcomes	 Understand various atmospheric processes. 	
	 Measeure the green house effect. 	
	 Verify atmospheric pressure at a altitude. 	
Sr. No.	Contents	Hours
1	To measure oxygen content in air.	4
2	Measurement of solar constant	4
3	To study hydrostatic force in stellar bodies.	4
4	To determine atmospheric pressure	4
5	To calculate masses of various planets	4
6	To calculate mass of object on different planets	4
7	To study solar ellipse	4
8	To study lonar ellipse	4
9	To calculate various parameters of rocket motion (Ve, B.E. Vo, etc)	4
10	To study the formation of mirage.	4
11	To study an effect of EM field on object in atmospheric spheres.	4
12	To study latentand specific heat of given mass of water (for all phases)	4
13	To measure the humidity of given mixture 1) K ₂ SO ₄ , 2) Licl ₂ 3)	4
	$Na(OH)_2$	_
14	To demonstrate how greenhouse gases affect temperature.	4
15	To demonstrate the principle of hydrostatic equilibrium, which explains how fluid pressure changes with depth and how forces balance in a static fluid. David G. Andrews (2000) 2 nd Edition Introduction to Atmospheric Physics,	4
Study Resources	 Cambridge University Press. Murry L. Salby (1995) Fundamentals of Atmospheric Physics, Academic Press. https://shop.elsevier.com/books/fundamentals-of-atmospheric-Physics/pielke/978-0-12-615160-2 Menn N., (2004), Practical Optics, 1stEdision, Academic Press. W. Schroeder, (1965), Practical Astronomy, Philosophical Library. J. J. Nassau, (1948), Practical Astronomy, 2nd Edition, McGraw Hill Text. George L. Hosmer & James M. Robbins, (1963), Practical Astronomy, John Wiley and Sons Inc. Kenneth Glyn Jones, (1998), Handbook of Astronomy and AstroPhysics, Cambridge University Press Arora C.L., (1988), Experimental Physics: Principles and Practice, S. Chand Publishing Ould R. W. K., (1984), Practical Spectroscopy, 1st edition, Butterworth-Heinemann. Robinson K., (2013), Spectroscopy: The Key to the Universe, Springer Roy A.E. and Clarke D., (2004), Astronomy: Principles and Practice, 4th edition, CRC Press. 	

*Mandatory to perform any 12 practical from above.

T.Y. B.Sc. Physics (Vocational) Semester-VI

PHY-VSC-361: Computational Physics Using C Language Total Hours: 30 Credits: 2

Total I	Hours: 30 Credits: 2	
Course	■ To introduce fundamental programming concepts through C-language, in	cluding
Objectives	algorithms, flowcharts, and structured programming.	
	■ To implement numerical methods such as root-finding algorithms, nu	merical
	integration, and differential equation solvers in Physics-related problems.	
	■ To introduce graphical programming in C, including basic graphic functions li	ke line,
	circle, arc, and bar.	
	■ To enhance computational thinking by applying C programming to solve	Physics
	problems through iterative and numerical methods.	•
Course	After successful completion of this course, students are expected to:	
Outcomes	To write algorithm, flowchart and C program of any problem to solve it	neina
		using
	computer.	
	Learn about concepts of programming such as print data, read data and operate data	
	Learn the arrays, pointers and user defined functions required for high perf	orming
	computational skill.	
	■ Improve the problem solving and analytical ability.	
Unit	Contents	Hours
		Hours
	Introduction to Programming & C Basics	
	 Definition and properties of algorithms 	
	 Algorithm development, flowcharts (symbols and simple flowcharts) 	
	■ Introduction to C programming: Structure of a C program	
Unit I	C character set, keywords, constants, variables, and data types	08
	Symbolic constants and qualifiers	
	Input/Output functions: scanf(), printf(), getchar(), putchar(), gets(), puts()	
	• Operators and expressions: Arithmetic, relational, logical, assignment,	
	conditional	
	Control Structures & Functions	
	• Control statements: if, if-else, loops (while, do-while, for), nested control	
	structures	
	 Jump statements: break, continue, goto, switch-case 	
Unit II	Library functions (mathematical, trigonometric)	07
	• Arrays: 1D and 2D (Sorting, matrix sum & multiplication)	
	• Concept of pointers with examples	
	• User-defined functions: Definition, declaration, prototype, call by value &	
	reference	
	Graphics in C	
	• Introduction to graphics in C	
Unit III	 Basic graphics commands: point(), line(), circle(), arc(), ellipse(), bar() 	05
	 Simple illustrative examples and applications in Physics 	
	Computational Physics & Numerical Methods	
	• Root-finding methods: Bisection method, Newton-Raphson method,	
	Algorithm, flowchart, C-program implementation	
Unit IV	• Numerical Integration: Trapezoidal rule, Simpson's 1/3rd rule,	10
Omt IV	Algorithm, flowchart, C-program implementation	10
	• Differential Equations: Taylor series method, Euler's method, Fourth-	
	_ *	
Cturde.	order Runge-Kutta method, Implementation through C-programming	
Study	Programming in C. (Schaum's series), Gottfreid, TMH	
Resources	Programming in C- Balgurusami, Prentice Hall publications Let us C. Vashwent Kenetker, BPR publications	
	Let us C- Yashwant Kanetkar, BPB publications Programming with C. K.P. Vanuagenal, S. P. Pragad, TMH	
	Programming with C- K.R. Venugopal, S. R. Prasad, TMH. Introductory methods of numerical analysis S. Sastry, Prantice Hell	
	Introductory methods of numerical analysis-S. Sastry, Prentice Hall	
	■ Computer oriented numerical methods – V. Rajaraman.	

T.Y. B.Sc. Physics (Vocational) Semester-VI

PHY-VSC-362: Practical on Computational Physics & C language

Course	Inductional fundamental programming appears including variables on	orotors
Objectives	 Understand fundamental programming concepts, including variables, op- loops, and conditional statements in C. 	ciaiois,
o sjecu ves	Implement and analyze numerical methods such as matrix operations, sorting,	
	factorial calculations, and prime number generation.	sorumg,
	 Apply user-defined functions, recursion, and parameter passing technique 	es in C
	programs.	
	Explore fundamental numerical techniques like least square fitting, Ne	ewton-
	Raphson method, and numerical integration.	
	After successful completion of this course, students are expected to:	
Outcomes	 Design and implement C programs using appropriate data types, operate 	ors, and
	control structures.	
	 Develop algorithms and flowcharts for mathematical and logical operation 	
	• Apply numerical methods like matrix multiplication, polynomial roo	ts, and
	numerical integration in C programming.	
	• Demonstrate proficiency in sorting, recursion, and function calling technology and soll by reference	nıques
Sr. No.	such as call by value and call by reference.	Hours
Sr. No.	Contents	nours
1	Write an algorithm and draw a flowchart of any one of the following program:	4
	(a)Determine odd or even number (b) Determinant of a 3 x 3 matrix	
2	Study of different errors in compiling the C program using valid or invalid	4
	variable names	
3	Read, Store and Print the constant, integer, real and character variable data in C	4
	Program.	
4	Write a program to learn operators and to make any of the operations a) addition	4
	b) subtraction c) multiplication d) division	
5	Write a program to study Relational Operators, Logical Operators, Assignment	4
	Operators, Conditional Operator.	
6	Write a program to find largest number out of three numbers using if, if-else	4
7	Statement. Write a program to find Factorial of a number using for loop and while loop	4
	Write a program to find Factorial of a number using for loop and while loop	
8	To find out the first 100 prime numbers (using do-while loop)	4
9	Write a program to store the 10 numbers in an array and arrange them in	4
40	ascending order using bubble sort method.	_
10	Matrix multiplication	4
11	Factorial of a number by recursive method to learn user defined function	4
12	Write user defined function and test the Call by value and Call by reference of	4
_ _	passing arguments.	-
13	Write a program to find the constant using line fitting of a given data using least	4
	square fit method.	_
14	Roots of polynomial (Newton Raphson)	4
15	Numerical Integration by Trapezoidal rule/ Simpson's 1/3 rule	4

Study	Programming in C- (Schaum's Series): B. Gottfreid, Tata McGraw Hill
Resources	Publishing
	Programming in C: E. Balgurusamy, Tata McGraw Hill Publishing
	■ Let us C: Yashwant Kanetkar, BPB publications
	Programming with C: K.R. Venugopal, S. R. Prasad, Tata McGraw Hill
	Publishing
	■ Introductory Methods of Numerical Analysis-S. Sastry, Prentice Hall
	Publishing
	■ Computer Oriented Numerical Methods – V. Rajaraman, Prentice Hall of
	India

^{*}Mandatory to perform any 12 practical from above.

Skills acquired and Job prospects for the TYBSc Physics students:

After completion of T.Y.B.Sc. (Third Year Bachelor of Science) Physics student, acquires a variety of skills that can help in different career paths.

Acquired Skills:

- Development in analytical &comphrehensive ability to solve complex problems.
- Experimental & laboratory skills, hands-on experience with lab instruments & data collection.
- Interdisciplinary knowledge of understanding the concepts of electronics, quantum mechanics, material science and many more.
- Develop communication & presentation ability to convey scientific concepts.

As well a B.Sc. in Physics provides a strong foundation & better paying jobs

• Job Prospects:

- Laboratory Technician
- Meterologist
- Data analyst or Data Scientist with proficient programming skills
- With additional training Quality control analyst, electronin or instrumentation engineer, Indian railway, Defense (via AFCAT, CDS)

Similarly, he/she can enhanced carrier opportunities with higher education.

There are numerous opportunities for the students who has completed his/her degree in B.Sc./B. Sc.Honors with Physics.