K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी -'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date:- 01/08/2024

NOTIFICATION

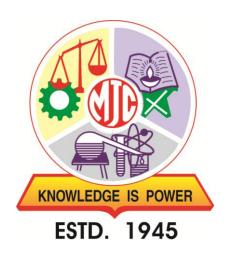
Sub :- CBCS Syllabi of M. Sc. in Microbiology (Sem. III & IV)

Ref. :- Decision of the Academic Council at its meeting held on 27/07/2024.

The Syllabi of M. Sc. in Microbiology (Third and Fourth Semesters) as per **NATIONAL EDUCATION POLICY – 2020 (2023 Pattern)** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2024-25.

Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies


To:

- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

Khandesh College Education Society's

Moolji Jaitha College, Jalgaon

An "Autonomous College"
Affiliated to KBC North Maharashtra University, Jalgaon

SYLLABUS

M.Sc. IIMicrobiology

Under Choice Based Credit System (CBCS) and

as per NEP-2020 Guidelines

[w.e.f. AcademicYear:2024-25]

Preface

Skilled human resources is a prerequisite in higher education, and it is to be acquired through in-depth knowledge of theoretical concepts and hands-on laboratory methods of the subject. The present syllabus of M.Sc. part II in Microbiology has been prepared per the guidelines of UGC, NEP-2020 and the Government of Maharashtra. It aims to cultivate theoretical and practical knowledge of different fields of Microbiology among the students. The contents of the syllabus have been prepared to accommodate the fundamental aspects and advanced developments in various disciplines of Microbiology and to complement the needs of various applied sectors of Microbiology. Besides this, the students will be enlightened with knowledge in the newer areas of, Biomolecules and microbial metabolism, molecular biology and microbial genetics, virology, immunology, cell biology, environmental microbiology and extremophiles, fermentations, IPR, Patents, bioethics etc. The overall curriculum of one/ two-year also covers various advanced biotechniques and Bioinstrumentations such as bioinformatics. immunotechniqes, tissue culture and biosensors etc. Furthermore, the syllabus is structured to cater to Microbiology's present and future needs in the research field, industrial and environmental sectors, Entrepreneurship, etc., emphasizing imparting hands-on skills. Hence, the curriculum has more experiments that shall run hand-in-hand with theory. The detailed syllabus of each paper is appended with a list of suggested readings.

Program Outcomes (PO) for M.Sc. Program:

Program outcomes associated with an MSc degree are as follows:

- 1. Student has an in-depth understanding of advanced theories, concepts, and methodologies in their field of study.
- 2. Student should demonstrate advanced technical skills and proficiency in utilizing specialized equipment, software, and methodologies relevant to their field of study.
- 3. Students should be capable of critically analyzing complex problems and synthesizing information from various sources.
- 4. Students should be proficient in effectively communicating scientific information to both technical and non-technical audiences. They should be able to present their experimental findings through oral presentations, scientific writing, and appropriate visual aids.
- 5. Students should demonstrate leadership qualities and the ability to work effectively as a team.
- 6. Students should have developed advanced research skills and the ability to independently design and conduct rigorous scientific investigations. They should be able to analyze scientific literature, formulate research questions, develop research plans, collect and analyze data, draw valid conclusions, and learn about IPR.
- 7. Students should understand and adhere to their field's ethical principles and professional standards.

8. Students should recognize the importance of continuous learning and professional development. They should have the skills and motivation to stay updated with advancements in their field, engage in lifelong learning, and pursue further academic or professional opportunities.

Program Specific Outcome PSO (M.Sc. Microbiology):

After completion of this course, students are expected to learn/understand the:

No.	PSO
1	Advance techniques in microbiology, enzymology and purification of biomolecules.
2	Biochemistry of microbes concerningthe metabolism of biomolecules and bio-energetics.
3	Molecular biology for DNA replication, central dogma and gene regulation.
4	Concepts in cell biology, microbial genomics and microbial diversity.
5	Principle and applications of various bio-analytical tools and immune techniques.
6	Applications of microbes in food, agriculture, pharmaceutical, fermentation and environmental sectors.
7	Newer and applied areas such as applications of extremophiles, bioinformatics, and biostatistics.
8	Research methodology, IPR, Bioentreprenuership, bioethics and professional development.

Credit distribution structure for two years/one-year PG MSc programme

Level	Sem	Major (Core	e) Subjects	Minor Subjects	OJT/Int, RP	Cumulative Credits/Sem	Degree/ Cumulative
		Mandatory (DSC)	Elective (DSE)				Cr.
	I	DSC-1 (4T) DSC-2 (4T) DSC-3 (4T) DSC-4 (2P)	DSE-1(2T) A/B DSE-2(2P) A/B	RM (4T)		22	First-year PG OR One year PG diploma after
6.0	II	DSC-6 (4T) A/B	DSE-4(2P)			22	3 years UG
	Cum. Cr.	28	8	4	4	44	
		Exit option: PG	diploma (44 C	Credits) after t	hree-year UG de	gree	
	III	DSC-9 (4T) DSC-10 (4T) DSC-11 (4T) DSC-12 (2P)	DSE-5(2T) A/B DSE-6(2P) A/B		RP (4)	22	Second-year PG after 3 years UG OR PG degree after 4
6.5	IV	DSC-13 (4T) DSC-14 (4T) DSC-15 (2P) DSC-16 (2P)	DSE-7(2T) A/B DSE-8 (2P) A/B		RP (6)	22	years UG
	Cum. Cr.	54	16		4+10	88	

Sem- Semester, DSC- Department Specific Course, DSE- Department Specific Elective, T- Theory, P- Practical,

2 Years-4 Sem. PG Degree (80-88 credits) after Three Year UG Degree or 1 Year-2 Sem PG Degree (40-44 credits) after Four Year UG Degree

RM- Research Methodology, OJT- On Job Training, Int- Internship, RP- Research Project,

Cum. Cr. : Cumulative Credits

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree depending upon the number of credits secured;

Levels	Qualification Title	Credit Requ	Credit Requirements		
		Minimum	Minimum Maximum		
6.0	One-year PG Diploma program	40	44	2	1
	after 3 Yr Degree				
6.5	Two-year master's Degree program	80	88	4	2
	After 3-Yr UG				
	Or PG Degree after 4- Yr UG				

Examination Pattern for MSc

Theory Question Paper Pattern:

- 60 (External) +40 (Internal) for 4 credits
 - o External examination will be of three hours duration
 - o There shall be 5 questions, each carrying equal marks (12 marks each), while the tentative pattern of question papers shall be as follows;
 - o Q1 Attempt any 3 out of 4 sub-questions; each 4 marks
 - o Q 2, Q3, Q4 and Q5 Attempt any 2 out of 3 sub-question; each 6 marks.
- 30 (External) +20 (Internal) for 2 credits
 - o External examination will be of 1½ hours duration
 - o There shall be 3 questions Q1 carrying 6 marks and Q2, Q3 carrying 12 marks each. while the tentative pattern of question papers shall be as follows;
 - o Q1 Attempt any 2 out of 3 sub-questions; each 3 marks
 - o Q 2 and Q3 Attempt any 2 out of 3 sub-question; each 6 marks.

Rules of Continuous Internal Evaluation:

The Continuous Internal Evaluation for theory papers shall consist of two methods:

- **1. Continuous & Comprehensive Evaluation (CCE):** CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:
 - i. Individual Assignments
 - ii. Seminars/Classroom Presentations/Quizzes
 - iii. Group Discussions/Class Discussion/Group Assignments
 - iv. Case studies/Case lets
 - v. Participatory & Industry-Integrated Learning/Field visits
 - vi. Practical activities/Problem Solving Exercises
 - vii. Participation in Seminars/Academic Events/Symposia, etc.
 - viii. Mini Projects/Capstone Projects
 - ix. Book review/Article review/Article preparation
 - x. Any other academic activity
 - xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that three units of the syllabus are mapped to the CCEs.

2. Internal Assessment Tests (IAT): IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher can decide which units will be assessed using CCEs and which unit will be assessed based on IAT.

The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations.

The subject teachers must communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Practical Examination Credit 2: Pattern (30+20) External Practical Examination (30 marks):

- Practical examination shall be conducted by the respective department at the end of the semester.
- Practical examination will be of 3 hours and shall be conducted as scheduled.
- There shall be 05 marks for journal and viva voce. A certified journal is compulsory to appear for practical examination.
- The practical examination will be of a minimum of 3 hours duration and shall be conducted as per schedule for 2 consecutive days in case of practical where incubation conditions and allied aspects are essential.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by the department as per the schedule given.
- For internal practical examination, students must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and department head.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities the faculty assigns during regular practicals. For details, refer to internal theory examination guidelines.
- Finally, 40 (10+30) students' performance will be converted into 20 marks.

M.Sc. Microbiology Course Structure

Semester	Course Module	Credit	Hours/ week	TH/ PR	Code	TITLE
	DSC	4	4	TH	MIB-DSC-511	Advanced techniques in microbiology
	DSC	4	4	TH	MIB-DSC-512	Biochemistry of microbes
	DSC	4	4	TH	MIB-DSC-513	Molecular biology
	DSE	2	2	TH	MIB-DSE-514A	Microbial diversity and extremophiles
I	DSE	2	2	TH	MIB-DSE-514B	Cell biology
			4		MIB-DSC-515	Practical course on biochemistry and molecular
	DSC	2		PR		biology
	DSE	2	4	PR	MIB-DSE-516A	Practical course on techniques in microbiology
	DSE	2	4	PR	MIB-DSE-516B	Practical course on cell biology
	DSC	4	4	TH	MIB-RM-517	Research methodology for microbiology
	DSC	4	4	TH	MIB-DSC-521	Advanced Immunology
	DSC	4	4	TH	MIB-DSC-522	Advanced microbial enzymology
	DSC	4	4	TH	MIB-DSC-523	Applied molecular biology
II	DSE	2	2	TH	MIB-DSE-524A	Bioanalytical techniques
	DSE	2	2	TH	MIB-DSE-524B	Microbial genomics
	DSC	2	4	PR	MIB-DSC-525	Practical on enzymology
	DSE	2	4	PR	MIB-DSE-526A	Practical course on immune techniques
	DSE	2	4	PR	MIB-DSE-526B	Practical course on microbial genetics
	DSC	4	8	OJT	MIB-OJT-527	Internship / On job training
	DSC	4	4	TH	MIB-DSC-611	Applied and Environmental Microbiology
	DSC	4	4	TH	MIB-DSC-612	Pharmaceutical Microbiology
	DSC	4	4	TH	MIB-DSC-613	Agricultural Microbiology
	DSE	2	2	TH	MIB-DSE-614A	Plant and Animal Tissue Culture
III	DSE	2	2	TH	MIB-DSE-614B	Interdisciplinary Concepts in Microbiology
	DSC	2	4	PR	MIB-DSC-615	Practicals on Applied and Pharma Microbiology
	DSE	2	4	PR	MIB-DSE-616A	Practicals on Plant and animal tissue culture
	DSE	2	4	PR	MIB-DSE-616B	Practicals on Interdisciplinary microbiology
	DSC	4	8	RP	MIB-RP-617	Research project I
	DSC	4	4	TH	MIB-DSC-621	Advances in Fermentation Technology
	DSC	4	4	TH	MIB-DSC-622	Biostatistics and bioinformatics
	DSE	2	2	TH	MIB-DSE-623 A	Entrepreneurship in Microbiology
	DSE	2	2	TH	MIB-DSE-623 B	Food and Dairy Microbiology
IV	DSC	2	4	PR	MIB-DSC-624	Practicals on Biostatistics and Bioinformatics
1 4	DSC	2	4	PR	MIB-DSC-625	Practicals on Fermentation Technology
	DSE	2	4	PR	MIB-DSE-626A	Practicals on Professional development
	DSE	2	4	PR	MIB-DSE-626B	Practicalson Food and Dairy Microbiology
	DSC	6	12	RP	MIB-RP-627	Research project II
DSC	· D	enartment	-Specific (ore col	irse DSE	: Department-Specific elective

Department-Specific Core course Theory Research project Department-Specific elective Practical DSE

TH PR

RP

MIB-DSC-611: Applied and Environmental Microbiology

Total Hours: 60 Credits: 4

 To learn the principles and methods of microbiology of waste management. To know the aspects of biological conversion of agricultural waste To impart knowledge about contaminated environment and bioremediation Course outcomes Acquaint with skills related to microbial analysis of food Implement microbes-related strategies for waste management Execute strategy related to biological conversions of lignocellulosic waste Use of microbes for bioremediation 	Carres	To use deserted attentance used for uniquelyish analysis of food	
To know the aspects of biological conversion of agricultural waste To impart knowledge about contaminated environment and bioremediation After successful completion of this course, students are expected to: Acquaint with skills related to microbial analysis of food Implement microbes-related strategies for waste management Execute strategy related to biological conversions of lignocellulosic waste Use of microbes for bioremediation Unit Contents Food Microbiology Methods of food sampling (random, representative, attribute) Importance and preparation of dilutions Offline and online approaches tothe microbial analysis of food Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes Mycotoxins: sources, mechanism, prevention, extraction and detection Microbiological examination of specific foods Microbiological examination of specific foods Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocellulose Degradation of lignin, cellulose and hemicellulose, impediments of	Course	To understand strategies used for microbial analysis of food. To learn the principles and methods of microbiology of waste management.	
Course outcomes After successful completion of this course, students are expected to: • Acquaint with skills related to microbial analysis of food • Implement microbes-related strategies for waste management • Execute strategy related to biological conversions of lignocellulosic waste • Use of microbes for bioremediation Unit Contents Hours Food Microbiology • Methods of food sampling (random, representative, attribute) • Importance and preparation of dilutions • Offline and online approaches tothe microbial analysis of food • Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes • Mycotoxins: sources, mechanism, prevention, extraction and detection • Microbiological examination of specific foods • Meat and meat products, Milk and milk products • Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management • Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection • Primary treatments: screen, grit chamber, primary sedimentation or settling • Secondary biological treatment process: • Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR • Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) • Disinfection (Clarification, Ozonation) • Advanced tertiary process: biological removal of nitrogen and phosphorus, • Permissible limits for domestic and industrial waste • Anaerobic digestion: methane potential, microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste • Structure and composition of fignocellulose, impediments of	objectives	1 1	
After successful completion of this course, students are expected to: • Acquaint with skills related to microbial analysis of food • Implement microbes-related strategies for waste management • Execute strategy related to biological conversions of lignocellulosic waste • Use of microbes for bioremediation Unit Contents Hours Food Microbiology • Methods of food sampling (random, representative, attribute) • Importance and preparation of dilutions • Offline and online approaches tothe microbial analysis of food • Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes • Mycotoxins: sources, mechanism, prevention, extraction and detection • Microbiological examination of specific foods • Meat and meat products, Milk and milk products • Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management • Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection • Primary treatments: screen, grit chamber, primary sedimentation or settling • Secondary biological treatment process: o Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR o Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) o Disinfection (Clarification, Ozonation) • Advanced tertiary process: biological removal of nitrogen and phosphorus, • Permissible limits for domestic and industrial waste • Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste • Structure and composition of lignocellulose • Degradation of lignin, cellulose and hemicellulose, impediments of			
• Acquaint with skills related to microbial analysis of food • Implement microbes-related strategies for waste management • Execute strategy related to biological conversions of lignocellulosic waste • Use of microbes for bioremediation Unit Contents Food Microbiology • Methods of food sampling (random, representative, attribute) • Importance and preparation of dilutions • Offline and online approaches tothe microbial analysis of food • Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes • Mycotoxins: sources, mechanism, prevention, extraction and detection • Microbiological examination of specific foods • Microbiological examination of specific foods • Microbiological waste management • Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection • Primary treatments: screen, grit chamber, primary sedimentation or settling • Secondary biological treatment process: • Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR • Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) • Disinfection (Clarification, Ozonation) • Advanced tertiary process: biological removal of nitrogen and phosphorus, • Permissible limits for domestic and industrial waste • Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste • Structure and composition of lignocellulose and hemicellulose, impediments of	Course	·	
■ Implement microbes-related strategies for waste management ■ Execute strategy related to biological conversions of lignocellulosic waste ■ Use of microbes for bioremediation Unit Contents Hours Food Microbiology ■ Methods of food sampling (random, representative, attribute) ■ Importance and preparation of dilutions ■ Offline and online approaches tothe microbial analysis of food ■ Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes ■ Mycotoxins: sources, mechanism, prevention, extraction and detection ■ Microbiological examination of specific foods □ Meat and meat products, Milk and milk products ■ Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management ■ Overview of the conventional treatment process: □ coagulation, flocculation, sedimentation, filtration, disinfection ■ Primary treatments: screen, grit chamber, primary sedimentation or settling ■ Secondary biological treatment process: □ Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR □ Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) □ Disinfection (Clarification, Ozonation) ■ Advanced tertiary process: biological removal of nitrogen and phosphorus, ■ Permissible limits for domestic and industrial waste ■ Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste ■ Structure and composition of lignocellulose, impediments of			
Execute strategy related to biological conversions of lignocellulosic waste Use of microbes for bioremediation Unit Contents Food Microbiology Methods of food sampling (random, representative, attribute) Importance and preparation of dilutions Offline and online approaches tothe microbial analysis of food Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes Mycotoxins: sources, mechanism, prevention, extraction and detection Microbiological examination of specific foods Meat and meat products, Milk and milk products Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process:			
Unit I Food Microbiology			
Food Microbiology Methods of food sampling (random, representative, attribute) Importance and preparation of dilutions Offline and online approaches tothe microbial analysis of food Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes Mycotoxins: sources, mechanism, prevention, extraction and detection Microbiological examination of specific foods Microbiological examination of specific foods Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Anaerobic digestion: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of			
Methods of food sampling (random, representative, attribute) Importance and preparation of dilutions Offline and online approaches tothe microbial analysis of food Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes Mycotoxins: sources, mechanism, prevention, extraction and detection Microbiological examination of specific foods Meat and meat products, Milk and milk products Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of	Unit	Contents	Hours
Methods of food sampling (random, representative, attribute) Importance and preparation of dilutions Offline and online approaches tothe microbial analysis of food Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes Mycotoxins: sources, mechanism, prevention, extraction and detection Microbiological examination of specific foods Meat and meat products, Milk and milk products Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of		Food Microbiology	
Unit I Unit II Unit III			
Unit I Offline and online approaches tothe microbial analysis of food Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes Mycotoxins: sources, mechanism, prevention, extraction and detection Microbiological examination of specific foods Microbiological examination of specific foods Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Acrobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of			
Unit I • Detection and enumeration of indicator bacteria, pathogenic and toxigenic microbes • Mycotoxins: sources, mechanism, prevention, extraction and detection • Microbiological examination of specific foods • Meat and meat products, Milk and milk products • Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management • Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection • Primary treatments: screen, grit chamber, primary sedimentation or settling • Secondary biological treatment process: • Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR • Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) • Disinfection (Clarification, Ozonation) • Advanced tertiary process: biological removal of nitrogen and phosphorus, • Permissible limits for domestic and industrial waste • Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste • Structure and composition of lignocelluloses • Degradation of lignin, cellulose and hemicellulose, impediments of			
microbes Mycotoxins: sources, mechanism, prevention, extraction and detection Microbiological examination of specific foods Microbiological examination of specific foods Microbiological waste management Overview of the conventional treatment process: coagulation, floculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses, impediments of	TT . *4 T		1.5
Microbiological examination of specific foods	Unit I		15
 Meat and meat products, Milk and milk products Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management Overview of the conventional treatment process:		Mycotoxins: sources, mechanism, prevention, extraction and detection	
Food intoxications: causes, pathogenesis, prevention and control Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of		Microbiological examination of specific foods	
Microbiological waste management Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of		 Meat and meat products, Milk and milk products 	
Overview of the conventional treatment process: coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: O Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR O Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) O Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Unit III		 Food intoxications: causes, pathogenesis, prevention and control 	
coagulation, flocculation, sedimentation, filtration, disinfection Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of		Microbiological waste management	
 Primary treatments: screen, grit chamber, primary sedimentation or settling Secondary biological treatment process: Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of 		<u> </u>	
Secondary biological treatment process:		coagulation, flocculation, sedimentation, filtration, disinfection	
Unit II O Aerobic treatment: (a) Suspended growth - Oxidation lagoons, activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR O Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) O Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of		• Primary treatments: screen, grit chamber, primary sedimentation or settling	
Unit II activated sludge and membrane bioreactor (b) Attached growth TF, RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of			
Unit II RBC, PBR Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of			
 Anaerobic treatment: (a) Suspended growth - UASB, USB, Clarigester (b) Attached growth (EGSB, AF, FBR) Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of 			
(b) Attached growth (EGSB, AF, FBR)	Unit II	·	15
 Disinfection (Clarification, Ozonation) Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of 			
 Advanced tertiary process: biological removal of nitrogen and phosphorus, Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential, microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of 			
 Permissible limits for domestic and industrial waste Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of 			
 Anaerobic digestion: methane potential,microbiology and biochemistry of biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of 			
biomethanation, and types of anaerobic digesters. Biological conversion of Lignocellulosic waste • Structure and composition of lignocelluloses • Degradation of lignin, cellulose and hemicellulose, impediments of			
Unit III Biological conversion of Lignocellulosic waste Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of			
Unit III Structure and composition of lignocelluloses Degradation of lignin, cellulose and hemicellulose, impediments of			
• Degradation of lignin, cellulose and hemicellulose, impediments of			
	Unit III		15

	•	Pre-treatment of lignocellulosic material: physical, chemical and biological (microbial and enzymatic) and related issues	
	•	Fermentation of lignocellulosic biomass: SmF, SSF, SHF, SScF	
	•	Applications of lignocellulosic waste for ethanol production	
	•	Composting:principle steps, chemistry, microbial succession, technologies of composting	
	Ri	oremediation and biodegradation of xenobiotics	
	•	Biodegradation: concept, mechanism, its measurement and affecting factors	
	•	Concepts of bioconversion	
	•	Bioremediation	
		Co-metabolism, mineralization, conjugation	
		 Strategies: Ex-situ and in-situ 	
		o Treatments: intrinsic, biostimulation, bioaugmentation,	
Unit IV		rhizostimulation, bioleaching, phytoremediation	15
	•	Methods for microbial treatments of pollution: bioreactors, biopiles,	
		landfilling, bioventing, bio-sparging	
	•	Limitations to microbial degradation of compounds	
	•	Biodegradation of xenobiotics	
		 Types and hazards of xenobiotics 	
		 Biochemical/ physiological approach 	
		 Molecular techniques and monitoring of bioremediation 	

- Singh A. and Ward O.P. (2004) Biodegradation and Bioremediation, Springer-Veil ag,, Berlin
- Hurst C.J. (2002) Manual of Environmental Microbiology, ASM Press, Washington D.C.
- Demain A.L. and Davies J.E. (1999) Manual of Industrial Microbiology and Biotechnology, ASM Press, Washington D.C. (ISBN: 1-55581-128-0).
- Martin A.M. (1998) Bioconversion of waste materials to Industrial Products, Blackie Academic and Professional, London (ISBN: 0-7514-0423-3).
- Harrigan W.F. and McCance M.E. (1994) Laboratory Methods in Food and Dairy Microbiology. Academic Press, London.
- Mossel, D.A.A, Correy J.E.L, Struijk C.B and Baird R.M (1995) Essentials of the Microbiology of Foods, John-Wiley and Sons Inc., New York.
- Satyanaraya U (2005) Biotechnology, Books and Allied (P) Ltd., Kolkata.
- Hobbs B and Roberts D (1993) Food Poisoning & Food Hygiene, Edward Arnold, London.
- Baker K.H. and Herson D.S. (1994) Bioremediation, Mc-Graw Hill Inc., New York.
- Pandey A. (2004) Concise Encyclopedia of Bioresource Technology, Food Products Press, The Haworth Reference Press, New York (ISBN: 1 -56022-980-2).

MIB-DSC-612: Pharmaceutical Microbiology

Total Hours: 60 Credits: 4

G		
Course	To introduce knowledge about antimicrobial agents. The state of	
objectives	To impart information related to regulatory aspects in the pharma industry To find the control of the con	
	To familiarize the students with aspects of laboratory practices To be an electronic policy because of the students with a spect of laboratory practices.	
Comman	To learn about various biopharmaceutical productions After a second of the secon	
Course outcomes	After successful completion of this course, students are expected to: • Get in-depth knowledge of the mechanisms of different antimicrobial agents	,
outcomes	 Understand quality control and regulatory aspects used in pharmaceuticals 	,
	 Infer and apply appropriate good laboratory practices 	
	 Apply knowledge of biopharmaceuticals for industrial production 	
Unit	Contents	Hours
		Hours
	Antibiotics and Synthetic antimicrobial agents	
	• Mechanism of action, microbial resistance, therapeutic/prophylactic	
	usage and adverse reactions	
	o Antibiotic and synthetic antimicrobial agents: beta-lactam,	
Unit I	aminoglycosides, tetracyclines, ansamycins, macrolidesAntifungal antibiotics: Griseofulvin, fluconazole	15
	A C 1 1 A C 1 NT 1 1 1	13
	 Antiviral drugs: Amantidines, Nucleoside analogues Peptide antibiotics 	
	 Synthetic antibiotics: Sulphonamides, Chloramphenicol, 	
	 Quinolones, Metronidazole 	
	Anticancer drugs	
	Regulatory aspects and quality assurance in pharmaceuticals	
	Regulations for the pharmaceutical industry	
	 General Lab designconsiderations: sample collection, testing, 	
	equipment, utility and service, air supply, contaminants, laboratory	
	safety	
	 Laboratory management : Training, quality, safety, LIMS 	
	• GMP in pharmaceuticals	
	o GMP: Key aspects, compliance, rules, Risk management and	
Unit II	documentation	15
	 US Food and Drug Administration (FDA) and European Union 	
	(EU GMP)	
	Design of sterile product manufacturing unit: Class A and clean room	
	• Quality control in pharmaceuticals: In-process and final product control	
	(antibiotics, immune sera, vaccines, biopharmaceuticals)	
	• ICH process	
	Sterilization control and sterility validation	
	In vitro and in vivo testing for pyrogens and endotoxin	
L		

	Microbiology laboratory techniques	
	Good laboratory practice (GLP), laboratory safety and aseptic	
	technique	
	Pharmacopeia and microbiological tests	
	Microbiological examination of nonsterile products:	
	 TVC: Bioburden determination, method validation, media 	
Unit III	growth promotion, sample preparation, test methods	15
	(membrane filtration, pour / spread plate, MPN)	
	 Tests for specified organisms and specification limits 	
	 Measurement of cell concentration in suspension by optical 	
	density	
	 Sterility testing 	
	 Environmental monitoring and water analysis 	
	Production of Biopharmaceuticals	
	Asparaginase and Clinical dextran	
	 Vaccines: multivalent subunit, bacterial, DNA vaccines 	
	 Viral vaccines: Live (attenuated, recombinant), Inactivated, Virion 	
	subunit vaccines, production of viruses for vaccines, Virus-like	
	particles, synthetic peptide vaccines	
Unit IV	 Immunosera and monoclonal antibodies 	15
	Rational drug design	
	 Concept and steps of drug design 	
	 Lead drug and Pro-drug with examples 	
	 Structure-based and combinatorial approach 	
	 Computer-aided drug design and software 	
D. C	Strategies for drug discovery and clinical trial	

- Sandle Tim (2016) Pharmaceutical Microbiology: Essentials for Quality Assurance and Quality Control, Woodhead Publishing, Amsterdam
- Hugo W.B. and Russell A.D. (2003) Pharmaceutical Microbiology, 6th edn, Blackwel Science, Oxford, UK (ISBN: 0-632-04196-X)
- Krogsgaard-Larsen P, Lilijefors T and Madsen U (2004) Textbook of Drug Design and Discovery, 3rd edn., Taylor and Francis, London (ISBN: 0-415-28288 PB).
- Haider S.I. (2006) Validation Standard Operating Procedures, 2nd edn., CRC Press Taylor and Francis Group, NY (ISBN: 0-8493-9529-1).
- Dutton C.J., Haxell M.A., McArthur F. and Wax R.G. (2002) Peptide Antibiotics, Marcel Dekker Inc., NY, USA (ISBN: 0-8247-0245-X)
- Seth S.D. (2004) Textbook of Pharmacology, 2nd edn., Elsevier, New Delhi.
- Bhatia R and Ichhpujani R.L. (1995) Quality Assurance in Microbiology, CBS Publishers, New Delhi (ISBN: 81-239-0387-1).
- Chakraborty C and Bhattacharya A (2004) Pharmacogenomics: An approach to New Drug Development. Biotech Books, New Delhi (ISBN: 81-7622-105-8).

MIB-DSC-613: Agricultural Microbiology

Total Hour	rs: 60 Cro	edits: 4
Course	To introduce various attributes of microbial ecology	
objectives	To study the microbial interaction with plant root	
	To know the pathogenic interaction of microbes with plants	
	To learn the mechanism of plant defence and its biocontrol	
Course	After successful completion of this course, students are expected to:	
outcomes	Understand microbial ecology	
	 Comparevarious plant-microbe interactions for applications 	
	 Describe the mechanism of plant and pathogen interactions 	
	Categorise various approaches for biocontrol plant disease	
Unit	Contents	Hours
	Microbial Ecology	
	Basic microbial ecology and its components	
	Microbial interactions: positive and negative	
	Microbial communities: concepts, elements and methods of analysis:	
	CLPP, PLFA, DGCE, SSCP, ARDRA, FISH	
Unit I	Methods for quantitative microbial ecology	15
	Indicators of soil health	
	Applications of microbial ecology for bioremediation	
	 Integrated Plant Nutrition through biofertilizers 	
	 Phytoremediation: Rhizodegradation 	
	 Microbial reclamation of saline and sodic soils 	
	Microbial interactions with plant roots	
	Rhizosphere and Rhizosphere engineering	
	Mycorrhizae: VAM, ericoid and orchid mycorrhiza, Ectomycorrhiza	
	Plant Growth Promoting Rhizobacteria (PGPR)	
	Strategies for rhizosphere and mycorrhizae community study	
Unit II	Microbial interaction with aerial plant structure	15
	Phylloplane, Stems/ flowers, leaf buds	
	Strategies for Aerial Plant Structure Study	
	Leguminous root nodules	
	Nodulation process and mechanism of nitrogen fixation, <i>nif</i> operon	
	Strategies to study the infection process	
	Pathogenic interactions with plants	
	Plant defence mechanisms (structural, biochemical, HR, SAR)	
	Microbial pathogenicity mechanisms in viruses, bacteria, and fungal	
T I 24 TTT	pathogens	
Unit III	Genetic basis of plant-pathogen interactions	15
	• Region-specific plant diseases (aetiology, symptoms and control):	
	Red rot of sugarcane, Sigatoka disease of banana, Powdery mildew,	,
	Smut and Rust	

	Microbial Biocontrol of Plant Disease	
Unit IV	 Methods of plant disease detection: traditional and innovative Plant disease control: general strategies and principles of IDM 	
	 Bio pesticides: BT, Siderophore and Trichodermca, Pseudomonas, NPV, Beauveriabassiana 	15
	Biocontrol of post-harvest diseases	
	Control of plant pathogens by genetic engineering	
	Genetically modified crops	

- Stanier RY, Ingraham JL, Wheelis ML and Painter PR (1993) General Microbiology, 5th edn., The McMillan Press Ltd., London (ISBN: 0-333-41768-2).
- Atlas RM and Bartha R (1998) Microbial Ecology-Fundamental and Applications, Addison Wesley Longman Inc.
- Lynch and Poole (1984) Microbial Ecology A Conceptual Approach, Blackwell Scientific Publ., New York.
- Streips UN and Yasbin RE (2002) Modern Microbial Genetics, 2nd edn., Wiley-Liss, USA (ISBN: 0-471-38665-0).
- Coyne MS (2004) Soil Microbiology: An Explanatory Approach, Delmar/Thomson Asia Pvt. Ltd., Singapore (ISBN: 981-240-203-9).
- Kumar HD and Kumar S (2004) Modern concepts of Microbiology, 2nd edn., Vikas Publishing House Pvt. Ltd., New Delhi (ISBN: 81-259-1000-X).
- Hurst CJ, Crawford RL, Knudsen GR, McInerey MJ and Stetzenbach LD (2002) Manual of Environmental Microbiology, 2nd edn., ASM Press, Washington DC
- Ciancio A and Mukerji KG (2007) General Concepts in Integrated Pest and Disease Management, Springer, The Netherlands (ISBN: 978-1-4020-6060-1).
- Buchnan BB, Gruissem W and Jones RL (2000) Biochemistry and Molecular Biology of Plants, IK International Pvt. Ltd., New Delhi (ISBN:81-88237-11-6).
- Boland GJ and Kuykendall LD (1998) Plant-Microbe Interactions and Biological Control, Marcel Dekker Inc., NY, USA (ISBN: 0-8247-0043-0).

MIB-DSE-614A: Plant and animal tissue culture

Total Hour	rs: 30 Cre	edits: 2
Course	To acquaint basic knowledge about Plant tissue culture	
objectives	To apprise basic knowledge about Animal tissue culture	
Course	After successful completion of this course, students are expected to:	
outcomes	Relate information required for PTC laboratory	
	Infer techniques require for Animal tissue culture	
Unit	Contents	Hours
	Introduction to plant tissue culture	
	 Laboratory organization of PTC and aseptic techniques 	
	Basic structure and growth of a plant	
	Benefits and application of plant tissue culture	
	• Definition: Ex-plant, callus, differentiation, re-differentiation,	
	Totipotency	
	Culture media composition	
	Basic techniques of plant tissue culture	
Unit I		15
	In vitro germplasm conservation and Cryopreservation	
	 Methods in Plant tissue culture Callus culture and Cell culture 	
	o Protoplast: Isolation, culture and regeneration	
	o Somatic hybridization: mechanism of protoplast fusion, selection	
	of hybrid cells, cybrids, applications and limitation	
	o Organ culture (In vitro production of haploid plants):	
	Androgenesis (anther and pollen culture) and Gynogenesis	
	(ovary and ovule culture).	
	Introduction to Animal Cell and Tissue Culture	
	Animal tissue culture laboratory: facilities, aseptic condition and risk	
	 Advantages and limitations of animal tissue culture 	
	Cultural media: Physicochemical properties and composition	
	• Cell lines: types (finite and continuous), monoculture	
	• Primary culture: Techniques of disaggregation – (mechanical	
	enzymatic)	
Unit II	• Cultured cells:	15
	 Characteristics 	
	 Cell adhesion, proliferation and differentiation 	
	 Initiation and development of cell culture 	
	Senescence and apoptosis	
	Transformation in animal cells	
	o Cell transformation - In vitro culture of oocytes/embryos, DNA	
	microinjection, Cell/embryo cryopreservation	
	 Scaling up of Animal Cell Culture 	

- Satyanarayan, U. (2017). Biotechnology, Book and Allied Limited, Kolkata.
- Sing, B. D. (2005). Biotechnology, Kalyani publisher, New Delhi.
- Arora, M. P. (2003). Biotechnology, Himalaya Publishing House, Mumbai.
- Ramavat, K. G. (2008). Plant biotechnology, S. Chand and Co., New Delhi
- Freshney, R. Ian. (2006). Culture of Animal Cells: A Manual of Basic Techniques, John Wiley and Sons, Inc., New York
- Chawla, H. S. (2009). Introduction to Plant Biotechnology, 3rd edition, CRC press
- GangalSudha (2007). Principles and Practice of Animal Tissue Culture, Universities Press India Pvt. Ltd.
- Gupta, P. K. (2004). Biotechnology and Genomics, Rastogi Publication Meerut.
- Jogdand, S. N. (2012). Advances in Biotechnology, Himalaya Publishing House, Mumbai.

MIB-DSE-614B: Interdisciplinary Concepts in Microbiology

Total Hour	rs: 30	redits: 2
Course	Introduce students to the fundamentals of nanotechnology Biosensor	
objectives	Understand the importance of medical coding in healthcare documentation.	
Course	After successful completion of this course, students are expected to:	
outcomes	• Explore the applications of nanomaterials and Biosensors.	
	Acquire essential knowledge and guidelines of various coding systems	
Unit	Contents	Hours
	Nano technology	
	Historical development and critical milestones in nanobiotechnology.	
	Overview of nanoscale phenomena relevant to microbiology.	
	 Principles of nanosensors and nanoprobes for microbial detection. 	
	• Mechanisms of interaction between nanomaterials and microbial cells.	
	• Impact of nanomaterial properties on microbial adhesion, growth, and behaviour.	
	• Applications of nanobiotechnology in agriculture, food safety, bioremediation, rapid diagnostics and biosensing, environmental monitoring and remediation of microbial pollutants, nanoparticles as drug delivery vehicles, and microbial biofilms.	
Unit I	Biosensors	15
	 Definition, scope, components and sensing principle of biosensor. 	
	Classification of biosensors based on transduction mechanisms.	
	• Overview of optical, electrochemical, and piezoelectric biosensors.	
	• Factors influencing biosensor design: sensitivity, selectivity, stability	
	• Strategies for surface functionalization and biomolecule immobilization.	
	• Overview of fabrication methods for biosensors: microfabrication, thin-film deposition, etc.	
	 Applications of biosensors in medical diagnostics and monitoring, environmental sensing and pollution monitoring, food safety, agriculture, and bioprocessing. 	
	Medical coding	
	 Definition and importance of medical coding in healthcare. 	
	• Introduction to coding systems: ICD-10-CM, CPT, and HCPCS.	
	• Understanding the structure and format of code sets.	
Unit II	• Fundamentals of medical terminology: Prefixes, roots, and suffixes.	15
	• Common medical terms related to anatomy, physiology, and diseases	
	relevant to medical coding.	
	Principles and guidelines for accurate medical coding.	
	 Application of coding conventions, modifiers, and placeholders. 	
	 Case studies and coding exercises to apply learned concepts. 	

- Poole, C. P., & Owens, F. J. (2003). Introduction to Nanotechnology, Wiley
- Ramsden, J. (2016). Nanotechnology: an introduction. William Andrew Publishing
- Hornyak, G. L., Moore, J. J., Tibbals, H. F., & Dutta, J. (2018). Fundamentals of nanotechnology. CRC press.
- Binns, C. (2021). Introduction to nanoscience and nanotechnology. John Wiley & Sons.
- Carol J. Buck (2023) Step-by-Step Medical Coding. Elsevier
- Bowie, M. J. (2016). Understanding Current Procedural Terminology and HCPCS Coding Systems, Cengage Learning.
- DebasisBagchi, ManashiBagchi, Hiroyoshi Moriyama, FereidoonShahidi, (2013) Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences by Wiley-Blackwell
- Niemeyer C. M., (2006) Nanobiotechnology: Concepts, Applications and Perspectives by Wiley VCH,
- Jeong-Yeol Yoon, (2016) Introduction to Biosensors, Springer-Verlag New York
- Yang, Victor C. (2000) Biosensors and Their Applications, Ngo, That T. (Eds.)

MIB-DSC-615: Practicals on Appliedand PharmaMicrobiology

Total Hours: 60 Credits: 2 Course To impart training about aspects of microbiological quality control in he objectives pharmaceutical industry To familiarize quality activities required in the pharmaceutical industry To understand the methods of saccharification of lignocellulosic biomass **CourseOut** After successful completion of this course, students are expected to: Undertake various quality control tests of pharmaceutical products and media comes Carry out sterility testing of pharma products and perform the validation of Experiment with lignocellulosic saccharification. Understand various methods used for saccharification of lignocellulosic biomass **Contents** Sr. No. Hours 1 Validation of autoclave using chemical and biological indicator 4 Validation of efficiency of laminar air flow 2 4 Survival curve for Ultraviolet light/Heat /ethylene oxide and D, Z, F 3 4 value determination Environmental monitoring of samples from production areas and 4 4 personnel. Evaluation of disinfectant using Phenol coefficient (Rideal Walker 5 4 Test/ Chick Martin Test) 6 Sterility testing of in-process materials and finished products 4 Microbial Limit Test: analysis of water/ raw material/ finished product/ 7 4 packaging material/ Excipients) 8 Evaluation of quality of media/reagents for growth promotion tests. 4 9 Evaluation of carcinogenicity using the Ames test 4 Endotoxin/ pyrogen using LAL (water/ in-process/ final product) 10 4 Evaluation of microbial spoilage of refrigerated and canned food 11 4 Lignocellulosic saccharification using SSF/SHF/SScF and its 4 12 assessment Production of biogas using feedstock and detection using water 13 4 displacement method/ GC Estimation of sewage wastewater: BOD,COD/salinity, 14 4 alkalinity 15 Estimation of chemical parameters of compost: C:N ratio, P, K 4

- White D (2000) The Physiology and Biochemistry of Prokaryotes. Oxford University Press. Oxford.
- Mudili J (2007) Introductory Practical Microbiology, Narosa Publ. House Pvt. Ltd. New Delhi (ISBN: 978-81-7319-744-4).
- Primrose SB and Wardlow AC (1982) Source Book for Experiments for Teaching Microbiology, Academic Press, London (ISBN: 0-12-565680-7).
- Sawhney S K and Singh R (2001) Introductory Practical Biochemistry, Narosa Publ. House. Chennai.

MIB-DSE-616A: Practicals on Plant and Animal Tissue Culture

Total Hours: 60 Credits: 2

Course To understand methods in tissue culture

Course	To understand methods in tissue culture		
objectives	To know tissue culture media and inoculation		
	• To learn about advanced techniques associated with tissue culture		
CourseOut	After successful completion of this course, students are expected to:		
comes	Acquaint knowledge about tissue culture laboratory setup		
	 Learn about media used in tissue culture 		
	 Acquaint knowledge about micropropagation, endosperm culture root 	and	
	callus induction		
Sr. No.	Contents	Hours	
1	Acquaintance with plant / animal tissue culture laboratory plan	4	
2	Acquaintance with plant / animal tissue culture laboratory equipment	4	
3	Preparation and sterilization of MS/ATC medium, stocks and explants	4	
4	Induction of callus using suitable explant.	4	
5	Induction of Root tip culture using suitable explant.	4	
6	Induction of shoots tip culture using suitable explant.	4	
7	Development of Endosperm/ Meristem / Anther / Pollen culture using suitable plant material.	4	
8	Effect of plant growth regulators on callus induction	4	
9	Isolate the protoplast from given explant	4	
10	Development of somatic embryo from suitable tissue	4	
11	Quantitiative detection of phytochemicals / secondary metabolite from callus (alkaloids, phenols, glycosidesetc)	4	
12	Micropropagation of suitable explant	4	
13	Isolation and separation of animal cells with a suitable method	4	
14	Preparation of primary animal cell culture and its maintenance	4	
15	Estiation of viable cells of animal cell culture by using trypan blue	4	

- Dubey, R. C. & Maheshwari, D. K. (2004). Practical Microbiology, S. Chand & Co. New Delhi.
- Reinert J. and Yeoan M.M., (1989) Plant Cell and Tissue Culture: A Laboratory Manual, Springer Verlag publication, New York.
- Smith R.H., (1992) Plant Tissue Culture: Techniques and Experiment, Academic publication.
- Henry R. J., (1997) Practical application of Plant Molecular Biology, Chapman & Hall, London.

MIB-DSE-616B: Practicals on Interdisciplinary Microbiology

Total Hours: 60 Credits: 2

Course objectives	 To introduce Interdisciplinary concepts related to microbiology To learn experiments with nanotechnology 	
	 To understand biostatistics and other related topics 	
Course	After successful completion of this course, students are expected to:	
Outcomes	 Plan microbiological experiments with an interdisciplinary approa 	nch
	Perform experiments with nanotechnology	
	Explore the interdisciplinary nature of microbiology	
Sr. No.	Contents	Hours
1	Synthesis of Au/Ag metal nanoparticles by chemical route.	4
2	Optical properties of Au/Ag nanoparticles by using UV-Vis spectroscopy.	4
3	To calculate the absorption coefficient and optical band gap using UV-Vis. Spectroscopy.	4
4	Analysis of CNTs / nanoparticlesby UV-Vis.	4
5	Analysis of CNTs / nanoparticles by FTIR spectroscopy.	4
6	Determination of antimicrobial properties of silver nanoparticles.	4
7	Biosensing by nanozymes using UV-Vis spectroscopy.	4
8	Synthesis of metal nanoparticles using plant extracts and characterization	4
9	Practical based on sampling and biostatistics	4
10	Four probe methods determine the electrical conductivity of metals/alloys.	4
11	Electrochemical sensing of glucose	4
12	Hall effect - Determination of Hall coefficient.	4
13	Determination of metal ion content using AAS.	4
14	Mixing/ cleaning/ degassing/ cell disruption/ sample preparation using ultrasonicator	4
15	Visit to Physics/ electronics research laboratory for instrumentation	4

- Biosensors and modern bio-specific analytical techniques, (2005) L. Gorton (ed) Volume XLIV Elsevier.
- Edelstein A.S. (Editor). (1996). Nanomaterials Synthesis, properties and applications. IOP Publishing, UK.

- Zhon Ling Wang. (2000). Characterization of nanophase materials. Wiley-VCH Verlag GmbH.
- Plummer, D. T. (2001). An Introduction to Practical Biochemistry, 3rd ed., McGraw Hill Ltd. New Delhi.
- Sawhey, S. K. and Singh, R. (2002) Introductory Practical Biochemistry, Narosa Publication House, New Delhi.
- Schmauder, H. P, Schweizer, M. &Schewizer, L.M. (2003). Methods in Biotechnology, Taylor and Francis Ltd., London.

MIB-RM-617: Research Project I

Course	1. To give exposure to the students to research culture and technology	
objectives	 To introduce students to how to select a research topic, plan, perform expe collect and analyze the data To foster self-confidence and self-reliance in the students as they learn to w think independently 	
Course	After successful completion of this course, students are expected to:	
outcomes	 Conceive a problem based on published research and conduct a comprediterature survey. Learn handling of instruments, use of chemicals and how to concexperiments Learn how to present the project in PowerPoint and answer the quexaminers and the science of writing. 	duct the
Unit	Contents	Hours

Credit distribution (1 credit for each unit)

- Identification of a research topic, formulation of research problem, objectives, sample size and hypothesis, etc
- Preparation of Outline
- Review of literature
- Bibliography

Hours 120

The systematic approach towards the execution of the project should be as follows: (Wherever applicable)

- 1. The complete tenure of the research project should be one year. It should be allotted during the third semester and completed in the fourth semester.
- 2. Weekly 8 hours should be allotted to the research project in a regular timetable.
- 3. In the third semester, students will be evaluated based on a credit distribution mentioned above. In the fourth semester, students should perform further research work, collect and analyze the data, compile the results and prepare and submit the final dissertation.
- 4. Students may be given an opportunity to participate in ongoing research activities in the respective Departments/Schools/Supervisors' laboratories. This will familiarize them with the literature survey and give them a fundamental understanding of designing and executing a research project.
- 5. Students may work individually or in groups (not more than 3 students) to be decided by the concerned department/supervisor.
- 6. Each research group should have a different research topic with some possible level of novelty.
- 7. The student should select the topic relevant to priority areas of concern or allied subjects with the guidance of supervisor/ head of the department.
- 8. Students are encouraged to work on multidisciplinary and applied projects, but it is not mandatory criteria.
- 9. At the beginning, students should submit the outline of the research work to be carried out in the project. (Writing in order: Title, Aim and objectives, Literature to be collected, Experimental plan or method design, expected outcome etc.)
- 10. Write and submit a Literature Review Report and Research outline

Cradite 1

Tentative order for review: Title of the Project, Certificates, Acknowledgment, Abstract and Keywords, Contents, Introduction, Literature Review, Aim of the Project, Materials and Methods, Bibliography/reference etc.

Tentative order for research outline: Title page, introduction, background and significance of study, problems to be investigated, objective, hypothesis, chapter scheme, bibliography.

- 11. At the end of the third semester, each student should submit a detailed Literature Review Report and research outline.
- 12. An appropriate and essential conclusive statement must be drawn at the end of the study.
- 13. Students should maintain lab notebooks, and the Supervisor may ask them to submit the midsemester progress report.
- 14. For documents related to project submission: Font- Times New Roman, Heading Font Size-14, Normal Text Size-12, spacing-1.5, both sides justified and 1 inch margin on all side, both side printing on A-4 size.
- 15. Three copies of the Literature Review Report, research outline should be prepared (one copy for each department, guide, and student).
- 16. At the end of the semester, the candidate should prepare and present research work using a PowerPoint presentation with modern ICT tools and present the same in front of his/ her respective department during the Internal Examination.
- 17. For external examination the candidate will have to present the research work and face viva voce.
- 18. Students may present their research work in Avishkar/Webinars/Conferences.
- 19. Students should note that plagiarism is strictly prohibited.

Internal examination (40 marks): Components of continuous internal assessment:

- Draft Research Outline (10 marks)
- Draft Review of literature (10 marks)
- Working Bibliography (10 marks)
- PowerPoint presentation, and oral examination (10 marks)

External examination (60 marks) and Components of external assessment:

- Final submitted review report, research outline in bound form at the time of examination (40 marks)
- Overall presentation reflecting the contribution of work, response to questions (20 marks)

- Gurumani, N. (2019). Scientific thesis writing and paper presentation. MJP Publisher, Chennai
- Gurumani, N. (2014). Research methodology for biological science, MJP Publisher, Chennai
- Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.
- Malmfors, B., Garnsworthy, P., & Grossman, M. (2003). Writing and presenting scientific papers. Nottingham University Press.
- Joshua, O. Miluwi&Hina Rashid, R. M. (2015). Principle Method and Practices, Mangalam Publication.
- Krishnaswamy O. P & Reddy, D. Obul. (2010). Research Methodology and Statistical Analysis, Himalaya Publishing House

MIB-DSC-621: Advances in Fermentation Technology

Total Hour	rs: 60 Cr	redits: 4
Course	To introduce upstream processing in microbial fermentation	
objectives	To learn about bioreactors	
	To familiarize with recovery techniques used for fermentation products	
	Tointroduce the microbial processes for the production of various metabolit	tes
Course	After successful completion of this course, students are expected to:	
outcomes	Implement upstream processes at the industry	
	Get knowledge about bioreactor configuration and operation	
	 Justify relevant recovery process for microbial products 	
	Plan the production process for microbial products.	
Unit	Contents	Hours
	Upstream processing	
	• Overview of typical microbial fermentation process (sterilization,	
	inoculum, sampling, aeration, control system, cleaning)	
	Microbial growth: kinetics, measurement	
	Inoculum:	
	o Criteria for suitable inoculum (purity, stage of growth,	
	physiology, quantity, quality)	
	 Acclimatization, seed media 	
Unit I	 Development of inoculum for following processes with one 	15
	example: Yeast, Mycelial, Bacterial.	
	 Aseptic inoculation of fermenter 	
	Media for industrial fermentation:	
	 Types (synthetic and natural) 	
	o Formulation and Optimization	
	Fermentation- kinetics of batch and continuous culture	
	• Strain improvement: mutation, recombination, Parasexual Cycle,	
	Protoplast fusion and rDNA technique	
	Bioreactor (Design and Application) and its operation	
	Design and construction materials of bioreactor	
	• Types of Bioreactor: continuous stirred tank, airlift, tower,	
	fluidized and packedbed, photobioreactor, Bubble Column	
	Bioreactors	
T1 '4 TT	• Sterilization: Del factor, batch and continuous sterilization and	15
Unit II	air(heat, filtration)	15
	Maintenance of aseptic condition	
	• Fermentation Process Parameters and Monitoring: aeration and	
	agitation system, sterility, pH, temperature, foam, DO, Pressure	
	andinlet& exit gas analysis. and process of automation	
	Solid state fermentation: concept, bioreactor, advantages and disadvantages	
	disadvantage	

	 Scale-up of fermentation:Major factors involved, Sale-up window, methods Mass and Heat transfer during fermentation 	
Unit III	 Downstream processing Biomass harvesting and removal of solid matter: ○ Criteria for choice of recovery ○ Methods: centrifugation, filtration, flocculation Cell disruption: mechanical, physical, chemical and enzymatic methods Product concentration: evaporation, liquid—liquid extraction, supercritical fluid extraction, ultrafiltration/membrane filtration, precipitation, three-phase partitioning, Product purification and characterization: chromatography-adsorption, size exclusion, affinity, ion exchange, reverse phase, HPLC Formulation: Drying (spray drying, freeze drying) Biosafety: Handling infectious and Recombinant microorganisms Production economics: cost (capital, operating), factors affecting 	15
Unit IV	 Microbial Products Enzymes: Protease, Penicillin acylase Organic acids: Gluconic acid Amino acids: L glutamic acid Polysaccharides: Polysaccharides (Alginate and Hyaluronic acid) Others: Probiotics and Yoghurt, Antibiotics: Rifamycin Ethanol: 1st, 2nd and 3rd generation Nucleotides: IMP, GMP Heterologous protein production with example Mammalian cell products: Monoclonal antibodies and vaccines Heterologous protein: INF, tissue plasminogen activator (TPA), GMCSF 	15

- Stanbury, P.F., Whitaker A. and Hall, S.J. (2016) Principles of Fermentation Technology, 3rd Edition, Butterworth-Heinemann, Amsterdam, ISBN: 9780080999531
- Mukhopadhyay SN (2007) Process Biotechnology Fundamentals, 2nd edn., Viva Books, Mumbai, (ISBN: 81-7649-496-8).
- Shuler ML and Kargi F (2008) Bioprocess Engineering-Basic Concepts, 2ndEdn. Prentice-Hall
- Moo-Young, MC (2011) Comprehensive Biotechnology, Vol. I, II & III, Elsevier Sci. Publisher, Amsterdam (ISBN: 978- 0-08-088504-9)
- El-Mansi EMT, Bryce CFA, Demain AL and Allman AR (2007) Fermentation Microbiology and Biotechnology, 2nd ed., CRC Taylor and Francis Group, Boca Raton, Florida.
- Lodish M R (2001) Bioseparation Engineering, Wiley Interscience, NY
- Rhem HJ, Reed G, Puhler A and Stadler P (1997) Biotechnology, 2nd edn., VCH Publ., Germany.
- OkaforNduka (2007) Modern Industrial Microbiology and Biotechnology, Science Publishers, USA.

- Freshney R. Ian (2010) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. John Wiley and Sons, Inc., Hoboken (ISBN:9780470528129)
- Bhatt SheelendraMangal (2011) Animal cell culture: concept and application. Alpha Science International, UK
- Satyanarayana U (2008) Biotechnology, Books and Allied P Ltd, Kolkata
- Singh B. D. (2008) Biotechnology: exploring horizons, Kalyani publishers, Ludhiana

MIB-DSC-622: Biostatistics and Bioinformatics

Total Hour	c: 60	redits: 4
Course	To impart an understanding of elementary aspects of bio-statistics	cuits. T
objectives	 To learn various statistical techniques applicable to biology 	
J	To introduce an overview of bioinformatics	
	To analyse the output data to predict a biologically relevant function	
Course	After successful completion of this course, students are expected to:	
outcomes	Apply basic biostatistical techniques for biological data	
	Practice biostatistics for interpretation of experimental data	
	 Use fundamentals of bioinformatics for analysis of database 	
	Access and interpretthe information from databases	
Unit	Contents	Hours
	Sampling and central tendency (theoretical concepts)	
	 Applications of biostatistics to biological database 	
	• Concepts: population, sample, probability, central tendency, dispersion, variance	
	• Sampling types: simple random, stratified, systematic, cluster	
	• Data : collection (primary and secondary), classification and tabulation	
Unit I	of data	15
	• Graphical techniques: one-dimensional, two-dimensional, pictograms	
	• Graphical presentation of data: histogram, frequency polygon,	
	frequency curve, ogive curve	
	Measures of Central tendency: Mean, Mode, Median	
	• Measures of dispersion: range, mean deviation, standard deviation,	
	coefficient of variation, skewness	
	Correlation, Regression, probability, ANOVA (theoretical concepts)	
	Correlation: definition, types, methods of measuring	
	• Regression :definition, equation, coefficient, Simple linear	
	regression,	
	• Analysis of Variance: One and two-way analysis of variance,	
	Intro experiments, Multivariate statistical analysis	
Unit II	• Probability: Definition, concepts: experiment, event (simple,	15
	compound, mutually exclusive, independent, dependent)	
	• Discrete distributions : Bernoulli, Binomial, Poisson. Continuous	
	distributions: Normal, Exponential, sigma limits, and probability	
	coverage.	
	• Concepts: Hypothesis testing, t-test, F test, Chi-square test, Design of	
	experiments, multivariate statistics	
	Overview of Bioinformatics	
Unit III	• Concept of Bioinformatics: definition, scope, application and	15
	limitations	13
	 Introduction to biological databases 	

	Primary (GenBank, EMBL, SWISS-PROT)	
	• Secondary (PROSITE, pfam)	
	• Specialized (GenBank EST and Microarray Gene	
	Expression)	
	UNIPROT database	
	• Structural databases: PDB, MMDB	
	 Sequence retrieval system - SRS, ENTREZ, Expasy 	
	• Software for Data Visualization: CN3D, Rasmol, Chimera, SWISS	
	PDB Viewer	
	 Application of programming Language in Biology: Bioperl, Biojava and R Programming 	
	• Protein structure prediction: Secondary structure (Globular,	
	Transmembrane), 3D Structure prediction (X-ray	
	Crystallography,NMR Spectroscopy)	
	Classification of protein Structure: SCOP	
	Sequence analysis and phylogeny	
	Sequence analysis: Concept of % Identity, Twilight Zone and mid-	
	night zone	
	 Concept of homology, analogy, othology and paralogy 	
	• Sequence alignment: pairwise (local, global) and multiple	
	sequences (Clustal W editing and interpretation)	
	Alignment Algorithms: Dot Matrix and Dynamic Programming,	
Unit IV	Gap Penalties	15
	 Introduction to scoring matrices-PAM and BLOSSUM 	
	Database similarity searching: BLAST(Variants and statistical	
	Significance) FASTA (statistical Significance)	
	Phylogenetic analysis: Definition, Choice of Molecular Markers	
	Phylogenetic tree: Terminology, construction methods (maximum)	
	Parsimony, Maximum Likelihood), Evaluation (Bootstrapping and	
	Jackknifing, Phylogenetic Programs).	
TD . C		

- Rosner, B. (1982) Foundations of Biostatistics. Duxbury Press, Boston
- Daniel, W. W. (1999) Biostatistics: A foundation for analysis in health science, 7th Ed. John Wiley, New York
- Armitage, P. and David, H.A. (1996) Advances in Biometry, John-Wiley & Sons Inc, New York.
- Lesk AM (2002) Introduction to Bioinformatics, Oxford University Press, UK.
- XiongJin (2006) Essential Bioinformatics, 1st edition, Cambridge University Press
- Steiper, M. E. (2005). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Edited by Andreas D. Baxevanis and BF Francis Ouellette. New York: John Wiley and Sons. 2001. 649 pp.
- Shanmughavel, P. (2005). Principle of Bioinformatics. Pointer Publishers
- Lesk AM (2002) Introduction to Bioinformatics, Oxford University Press, UK
- Xiong J (2006) Essential Bioinformatics, 1st edition, Cambridge University Press
- Attwood, T.K., Parry-Smith, D. J. and Phukan, S.(2007). Introduction to Bioinformatics. 1st edition, ISBN: 0582327881, Pearson Education Ltd.

MIB-DSC-623A: Entrepreneurship in Microbiology

Hours: 30	Cı	redits: 2
Course	• To impart an understanding of business management and entrepreneurship	
objectives	 To understand the basics of business ethics, safety and IPR 	
Course	After successful completion of this course, students are expected to:	
outcomes	 Understand fundamental business, management, marketing, operation and 	HRM
	 Address the issues related to business ethics and understand the concept and IPR 	
Unit	Contents	Hours
	Introduction to Business and Management	
Unit I	 Management: Definition, concept, importance Levels, Functions and Skills Decision making Strategic management: characteristics, importance SWOT analysis Production and operation management, concept of TQM Marketing and Marketing research Financial management: Concept of capital budgeting and working capital Human resource management and planning Business development and skills for bio-entrepreneurship Characteristics for being an entrepreneur in microbiology. Factors affecting microbiology/ biotechnology business: Role of government and schemes and Financial institutions. Personality, attitude, organizational behavior, leadership Principles of effective communication. Body language, public speaking, presentations Business proposal writing. 	15
	 Case studies of successful and unsuccessful bio-entrepreneurship. Ethics, regulation and safety 	
Unit II	 Business ethics: meaning, principals &Ethical dilemmas in Bioindustry Current regulatory bodies and laws/regulations for industry Biologics License Application (BLA) Safety and precautionsBiological, Chemical and Personal Biosafety: levels (BL 1, 2, 3, 4), GMOs and risks Intellectual property and IPR IPR- Concept, Forms of IPR, patentable and non-patentable items Legislations covering IPR's in India Steps in filing a patent, provisional and complete specification Valuation of patent and business concerns 	15

- Protection of biotechnological inventions
- Overview of GATT, WTO, TRIP and Indian Patent Act
- Protection of plant varieties and farmer's rights

- Mehta, S. S. (2008) Commercializing successful biomedical technologies: basic principles for the development of drugs, diagnostics and devices. Cambridge University Press.
- Patzelt, H., & Brenner, T. (Eds.). (2008) Handbook of bioentrepreneurship (Vol. 4). Springer Science & Business Media.
- JogdandS N (2007) Entrepreneurship And Business Of Biotechnology, Himalaya Publisher, Mumbai
- Kumar, S. A. (2008) Entrepreneurship development. New Age International.
- Mellor, R. (Ed.). (2008) Entrepreneurship for everyone: A student textbook. Sage.
- Singh B.D. (2008) Biotechnology: expanding horizons, Kalyani Publishers, Ludhiana
- Jogdand S N (2007) Advances in Biotechnology, Himalaya Publisher, Mumbai
- Gupta P. K. (2007) Elements of Biotechnology, Rastogi publications, Meerut
- Sambamurthy K, Karashutosh (2006) Pharmaceutical biotechnology, New Age International, New Delhi
- Modi H.A. (2008) Fermentation Technology (Vol 1 & 2), Pointer Publishers, Jaipur.

MIB-DSE-623B: Food and Dairy Microbiology

Total Hours: 30 Credits: 2 Course To introduce the basics of milk microbiology objectives To impart an understanding of food spoilage and preservation Course After successful completion of this course, students are expected to: outcomes Understand the fundamentals of milk spoilage and preservation address the issues related to food spoilage and preservation Unit **Contents** Hours Microbiology of milk Definition and composition of milk Sources of microorganisms in milk (farm, transport and manufacturing) Desirable and undesirable changes carried out by microorganisms in milk. Spoilage- gas production, proteolysis, repines, changes in milk fat, Unit I 15 alkali production, flavour and colour changes, spoilage and at different temperature Preservation: Asepsis, microbial removal, use of high and low temperatures, drying, condensation, and use of preservatives. Types and pathogens of bovine and human origin Microbiological examination of milk – SPC, DMC reductase tests, Pasteurization, phosphatase test, sterilization of milk. Cheese – microbiology, types and production. Food Microbiology Scope of Food Microbiology Factors affecting the growth and survival of microbes in food Intrinsic and extrinsic factors General principle of food spoilage Meat: microbial invasion of tissue, Microbial growth, Types of spoilage – aerobic and anaerobic o Fish and poultry: Defects and changes during storage in egg, Unit II 15 Microbial and non-microbial changes in egg, bacterial spoilage of poultry o Vegetables and fruits: general microbial spoilage types, spoilage of fruit and vegetable juice o Sugar and sugar food: sucrose, honey, candy Overview of food preservation o Heat, irradiation, high pressure, chilling, freezing, and chemical preservation.

- Harrigan W.F. and McCance M.E. (1994) Laboratory Methods in Food and Dairy Microbiology. Academic Press, London.
- Mossel, D.A.A, Correy J.E.L, Struijk C.B and Baird R.M (1995) Essentials of the Microbiology of Foods, John-Wiley and Sons Inc., New York.
- Satyanaraya U (2005) Biotechnology, Books and Allied (P) Ltd., Kolkata.
- Hobbs B and Roberts D (1993) Food Poisoning & Food Hygiene, Edward Arnold, London.
- Pandey A. (2004) Concise Encyclopedia of Bioresource Technology, Food Products Press, The Haworth Reference Press, New York (ISBN: 1 -56022-980-2).
- Frazier William C., Westhoff Dennis C., Vanitha N.M. (2017) Food Microbiology, 5th Edition, Tata McGraw Hill Publishing company, New Delhi
- Adams M. R., Moss M. O. (2007) Food microbiology, New Age International, New Delhi
- DeySukumar (2002) outlines of dairy technology, Oxford Uni. Press. New Delhi
- Eckles Henry, Combs Willes, Macy Horold (2009) Tata McGraw Hill Publishing company, New Delhi

MIB-DSC-624: Practicals on Biostatistics and Bioinformatics

Total Hours: 60 Credits: 2 Course To impart training about elementary aspects of statistics used in microbiology objectives To introduce a variety of computational methods for predicting functional behaviour of a biological system • To analyse the output data to predict a biologically relevant function After successful completion of this course, students are expected to: Course Outcomes Able to analyse experimental data with central tendency, its dispersion and presentation graphically Access biological databases, interpret structural aspects Familiar with statistical and bioinformatics software Sr. No. **Contents** Hours Calculate the mean, median, mode, range, variance, standard deviation, standard error, and confidence interval using MS 1 4 Excel/suitable software Plot straight Lines (Linear Least squares) using the LINEST 2 4 Function of MS Excel/ suitable software Plot-line, scatter graphs, bar graphs, and error bars using MS 3 4 Excel/ suitable software Determine linear regression, Correlation and their coefficients 4 4 using MS Excel/ suitable software Compute F-test (paired and unpaired), t-test using MS-Excel/ 5 4 suitable software Compute ANOVA, Chi 2-test using MS-Excel/ suitable software 4 6 Demonstrate multivariate analysis of process parameters using 7 4 statistical tools. 8 Exploring Biological databases –Genbank& Protein Data Bank 4 9 Exploring data retrieval systems –Entrez and SRS 4 4 10 Structural prediction of protein using ExPASy software Primary and tertiary structure analysis of protein/ DNA using 11 4 BLAST 12 Multiple sequence alignments using Clustal W 4 13 Phylogenetic tree analysis using MEGA 4 14 Primer designing using biological software Determination of primary/ secondary structure of amino acid 4 15 sequence using SOPM/GOR/ChauFasman, etc. software

- Bailey NTJ (1959) Statistical methods in Biology, ELBS and The English Universities Press Ltd., UK.
- Irfan Ali Khan and AtiyaKhanum (2004) Fundamentals of biostatistics, Ukaaz Publication, Hyderabad.
- Gupta SC (2019) Fundamentals of Statistics, Himalaya Publishing House, New Delhi.
- Bliss C1K (1967) Statistics inBiology, Vol. 1, McGraw-Hill, New York.
- Gore A, Paranjpe S and Kulkarni M (2009) Statistics for everyone, SIPF Academy Publishers, Nashik.
- Baxevanis AD and Ouellette BFF (2001) Bioinformatics: A practical guide to the analysis of genes and proteins. Second Edition. John Wiley & Sons, New York.
- Ewens WJ. and Gregory RG (2004) Statistical Methods in Bioinformatics, An Introduction, Springer, New York.
- Lacroix Z and Critchlow T (Eds.) (2003) Bioinformatics. Managing Scientific Data, Morgan Kaufmann Publishers.
- Misener S and Krawetz SA (Eds.). (2000) Methods in Molecular Biology, Volume 132.
- Stephen Misener, Stephen A. Krawetz (1999) Bioinformatics: Methods and Protocols. Humana Press, New Jersey.
- Mount DW (2001) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, New York.

MIB-DSE-625:Practicalson Fermentation Technology

Total Hours: 60 Credits: 2

Course	To know generalconsiderationsfor the fermentationprocess	
objectives	To learn statistical applications in process optimization	
	To produce the fermentative product ina laboratory	
Course	After successful completion of this course, students are expected to:	
Outcomes	Use the knowledge of laboratory fermentations	
	Perform the optimization of the fermentation process	
	Demonstrate various fermentative production of microbial products	
Sr. No.	Contents	Hours
1	Fermentor: demonstration of parts, cleaning, sterilization and assembling	4
,	Aseptic techniques in inoculation of fermenters and Aseptic sampling from fermentors	4
3	Calibration of fermentatorelectrodes/probes	4
4	Production and quantification of biomass (yeast/ Fungal /algae)	4
	Laboratory-scale fermentation of antibiotics/enzyme	4
0	Down Stream processing with an enzyme: filtrations, centrifugation, TFF	4
	Optimization of fermentation parameters using one factor at a time (OFAT) design	4
8	Screening of fermentation parameters using a statistical method	4
9	Application of response surface methodology for statistical optimizations of factors.	4
10	Production of fermentation products using chemically defined and crude economical raw material (molasses, agro-waste, food/dairy industry)	4
	Production of probiotics/yoghurt/curd/buttermilk	4
12	Production, application and efficacy determination of biofertilizer /siderophore (Pseudomonas biofertilizer in talc powder/ Azo/Rhizo)	4
13	Culturing and characterization of actinomycetes used in the pharmaceutical industry	4
14	Laboratory production of edible mushroom	4
15	Production of fermented products from SSF	4

- Aneja, K. R. (1996) Experiments in Microbiology, Plant Pathology, Tissue culture and Mushroom cultivation, 2nd Ed., WishwaPrakashan, New Delhi (New Age International, Pvt. Ltd.).
- Dubey R.C. and Maheshwari D.K. (2004), Practical Microbiology, S.Chand and Co. Delhi

- Sharma Kanika, Manual of Microbiology Tools and Techniques, 2nd Ed. 2007, Ane's Book India, New Delhi
- Reddy M. G., Reddy M. N., Saigopal D. V. R. and Mallaiah K. V. (2008) Laboratory experiments in Microbiology, Himalaya Publishing House, Mumbai
- Anuradha De,(2014) Practical and Applied Microbiology, 5th Edition, National Book Depot, Mumbai

MIB-DSE-626A: Practical on Professional development

Total Hours: 60 Credits: 2

Course objectives	 Develop effective communication skills for scientific presentations Enhance career planning and job search strategies. Learn the essentials of project writing, business skill 	S	
Course	After successful completion of this course, students are expected to:		
Outcomes	Write concise scientific reports and deliver informative presentations.		
	 Create professional and targeted CVs and cover letters 		
	Be well-prepared to advance in their professional careers		
Sr. No.	Contents	Hours	
1	Prepare the MS PowerPoint-based presentations.	4	
2	Demonstrate the working of the MS Word application.	4	
3	Preparation of table and graph using MS Excel.	4	
4	Preparation of standard operating procedure for the instrument.	4	
5	Preparation of Curriculum Vitae.	4	
6	To learn the interview techniques through a mock activity.	4	
7	Discussion of a topic through group discussion activity	4	
8	Preparation of application letter for interview/ leave etc.	4	
9	To learn the process of report writing / Effective scientific writing	4	
10	Practical based on Grammar / Vocabulary/plagiarism	4	
11	To learn the technique of communication skills- Speaking / public speaking	4	
12	Practical based on Self-assessment/goal setting/career planning	4	
13	Practical based on Marketing skill: advertisement/ video making and selling product	4	
14	Practical based on team building/management/leadership skill	4	
15	Case study / analytical -logicalthinking skills	4	

- Alley, M. (2013). The Craft of Scientific Presentations: Critical Steps to Succeed and Critical Errors to Avoid. Springer.
- Day, R. A., &Gastel, B. (2011). How to Write and Publish a Scientific Paper. Cambridge University Press.

MIB-DSE-626 B: Practicals on Food and Dairy Microbiology

Total Hours: 60 Credits: 2

I otal Hours		rcuits. 2
Course	To learn various milk and food testing procedures	
objectives	 To know food-associated pathogens and spoilage To be aware about food safety 	
Course	After successful completion of this course, students are expected to:	
Outcomes	Examine milk and food samples	
Outcomes	<u>=</u>	
	Infere about the quality of various food samples Apple and appeting for five languages.	
~	Apply good practices for food safety	
Sr. No.	Contents	Hours
1	Estimation of carbohydrate and protein content of food material	4
2	Estimation of the fat content of food material	4
3	Microbiological examination of milk – SPC and DMC	4
4	MBRT tests for the quality of milk	4
5	Pasteurization of milk and determination of efficacy using alkaline phosphatase test	4
6	Estimation of mycotoxin in food samples by TLC	4
7	Isolation of microorganisms from	4
8	Isolation of food-borne bacteria/ fungi from food products/ Canned food. (Salmonella/ E. coli/ S. aureous/ coliform etc.)	4
9	Isolation of microorganisms from spoiled bread.	4
10	Isolation of bacteria/ fungi from spoiled fruits and vegetables.	4
11	Effect of temperature on the spoilage of food products	4
12	Study of strategies for food/milk sampling –liquid/ solid	4
13	Isolation of bacterial probiotics from curd and development of probiotics in vitro	4
14	Description of standard practices for food safety in Hazard analysis criteria control points	4
15	Field visit/study tour to milk/ food industry/bakery	4

- Aneja, K. R. (1996) Experiments in Microbiology, Plant Pathology, Tissue culture and Mushroom cultivation, 2nd Ed., WishwaPrakashan, New Delhi (New Age International, Pvt. Ltd.).
- Dubey R.C. and Maheshwari D.K. (2004), Practical Microbiology, S.Chand and Co. Delhi
- Sharma Kanika, Manual of Microbiology Tools and Techniques, 2nd Ed. 2007, Ane's Book India, New Delhi
- Reddy M. G., Reddy M. N., Saigopal D. V. R. and Mallaiah K. V. (2008) Laboratory experiments in Microbiology, Himalaya Publishing House, Mumbai
- Anuradha De,(2014) Practical and Applied Microbiology, 5th Ed., National Book Depot, Mumbai

TT - - - . 100

MIB- 627: Research Project II

Hours: 18	<u>su</u>	Credits: 6
Course	1.	To give exposure to the students to research culture and technology
objectives	2.	To introduce students to how to select a research topic, plan, perform experiments,
		collect data and analyze the data
	3.	To foster self-confidence and self-reliance in the students as they learn to work and think independently
Course	Af	er successful completion of this course, students are expected to:
outcomes		 Conceive a problem based on published research and carry out a comprehensive survey of the literature
		 Learn handling of instruments, use of chemicals and how to conduct the experiments
		1
		 Learn how to present the project in PowerPoint and answer the queries to examiners as well as the science of writing

The systematic approach towards the execution of the project should be as follows: (Wherever applicable)

The complete tenure of the research project should be one academic year. It should be allotted during the third semester and completed in the fourth semester.

- 1. Weekly 12 hours should be allotted to the research project in a regular timetable.
- 2. In the fourth semester, students should perform further experimental work, analyze the data and compile the results.
- 3. Students may be given an opportunity to participate in ongoing research activities in the respective Departments/Schools/Supervisors' laboratories. This will familiarize them with the literature survey and give them a fundamental understanding of designing and executing a research project.
- 4. Students may work individually or in groups (not more than 3 students) to be decided by the concerned department/supervisor.
- 5. Each research group should have a different research topic with some possible level of novelty.
- 6. The student should select the topic relevant to priority areas of concern or allied subjects.
- 7. Students are encouraged to work on multidisciplinary and applied projects, but it is not mandatory criteria.
- 8. Students are expected to work in line with the research outline and literature review, which was submitted in the third semester.
- 9. Students are expected to learn how to execute the research work systematically and overcome the hurdles. Students will get the opportunity to learn about practical aspects of many characterization techniques or models and further how to effectively employ them in the research work. Students should be able to critically evaluate the literature on the topic, identify the research gaps, plan and perform the experiments, interpret the results, understand the limitations of the work and draw conclusions.
- 10. At the end of the semester, each student should submit a detailed Research Report.
- 11. The format of the final research report shall be as per the guidelines of respective department. (**Example**:Title of the Project, Certificates, Acknowledgment, Abstract and Keywords, Contents, Introduction, Literature Review, Aim and objective, Materials and Methods, Result, Data analysis and Discussions, conclusion, limitations, suggestion, future scope, Bibliography,

C--- 1!4-- C

Appendix etc.)

- 12. An appropriate and essential conclusive statement must be drawn at the end of the study.
- 13. Students should maintain lab notebooks, and the supervisor may ask them to submit the midsemester progress report.
- 14. For documents related to project submission: Font- Times New Roman, Heading Font Size-14, Normal Text Size-12, spacing-1.5, both sides justified and 1 inch margin on all side, both side printing on A-4 size.
- 15. Three copies of the dissertation should be prepared (one copy for each department, guide, and student).
- 16. At the end of the semester, the candidate should prepare and present research using a PowerPoint presentation using modern ICT tools during the Internal and External Examination.
- 17. Besides writing a dissertation, students are encouraged to write a manuscript/patent if the results obtained are worthy of publication.
- 18. Students may present their research work in Avishkar/Webinars/Conferences.
- 19. Students should note that plagiarism is strictly prohibited.

Internal examination (60 marks): Components of continuous internal assessment:

- Literature collected, methodological planning, analysis of data, design and work, progress reports etc (30 marks)
- Presentation in Webinars/Conferences/publication and departmental presentationetc(20 marks)
- Oral examination (10 marks)

External examination (90 marks) and Components of external assessment:

- Evaluation of dissertation submitted in bound form at the time of examination (60 marks)
- Presentation (PPT format) (15 marks)
- Overall presentation reflecting the contribution of work, Response to questions (15 marks)