K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी -'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date:- 01/08/2024

NOTIFICATION

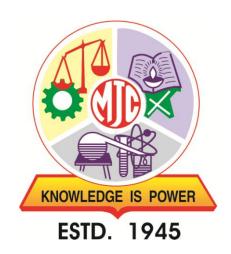
Sub :- CBCS Syllabi of B. Sc. in Microbiology (Sem. III & IV)

Ref. :- Decision of the Academic Council at its meeting held on 27/07/2024.

The Syllabi of B. Sc. in Microbiology (Third and Fourth Semesters) as per **NATIONAL EDUCATION POLICY – 2020 (2023 Pattern)** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2024-25.

Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies


To:

- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

Khandesh College Education Society's

Moolji Jaitha College, Jalgaon

An "Autonomous College" Affiliated to KBC North Maharashtra University, Jalgaon

STRUCTURE AND SYLLABUS

B.Sc. Honours/Honors with Research

(S.Y.B.Sc. Microbiology)

Under Choice Based Credit System (CBCS) and as per NEP-2020 Guidelines

[w.e.f. AcademicYear:2024-25]

Preface

Skilled human resources is a prerequisite in higher education, and it is necessary to acquire a thorough knowledge of theoretical concepts and hands-on laboratory methods. The Moolji Jaitha College (Autonomous) has adopted a department-specific model per the guidelines of UGC, NEP-2020 and the Government of Maharashtra. The Board of Studies in Microbiology and Biotechnology of the college has prepared the syllabus for the first-year undergraduate of Microbiology. The syllabus cultivates theoretical and practical know-how in different fields of microbiology. The contents of the syllabus have been prepared to accommodate the fundamental and applied aspects of various microbiology disciplines. Besides this, in the first year, the students will be enlightened about the skills related to microbial isolation, identification, and testing, which will enhance their employability.

The overall curriculum of three / four years covers general microbiology, biomolecules and microbial metabolism, molecular biology and microbial genetics, medical microbiology and immunology, industrial and applied microbiology, and environmental microbiology, and also covers various biotechniques. Furthermore, the syllabus is meticulously structured to cater to Microbiology's present and future needs of the Industrial Sector, research field, Environmental Area, Entrepreneurship, etc., ensuring that our graduates are well-prepared for real-world challenges. The curriculum strongly emphasises imparting hands-on skills, with more experiments that run hand-in-hand with theory. The detailed syllabus of each paper is appended with a list of suggested readings.

Program Outcomes (PO) for B.Sc. Program:

Program outcomes associated with a B.Sc. degree are as follows:

- 1. Graduates should have a comprehensive knowledge and understanding of the fundamental principles, theories, and concepts in their chosen field of study.
- 2. Graduates should possess the necessary technical skills and competencies related to their discipline, including laboratory techniques and data analysis.
- 3. Graduates should be able to identify, analyze, and solve complex problems using logical and critical thinking skills. They should be able to apply scientific methods and principles to investigate and find solutions.
- 4. Graduates should be proficient in effectively communicating scientific information, both orally and in writing.
- 5. Graduates should have a basic foundation in research methods and be capable of designing and conducting scientific investigations.
- 6. Graduates should be able to work effectively as part of a team, demonstrating the ability to collaborate with others, respect diverse perspectives, and contribute to group projects.
- 7. Graduates should recognize the importance of ongoing learning and professional development. They should be equipped with the skills and motivation to continuously learn, adapt to new technologies and advancements in their field, and stay updated with current research.

Program Specific Outcome PSO (B.Sc. Microbiology):

After completion of this course, students are expected to learn/understand the following:

1	Isolation, identification and characterization of various microbes from diverse habitats.
2	Impact of various groups of microbes on atmosphere, plant, human and animal health.
3	Principle and applications of various bio-analytical tools and techniques
4	Structure, properties, pathways and applications of biomolecules in various fields
5	Biochemical mechanisms, regulation and application of enzymes in various sectors
6	Applications of microbes in various fields such as agriculture, industry, medical etc.

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree depending upon the number of credits secured;

Levels	Qualification Title	Credit Requ	irements	Semester	Year
		Minimum	Maximum]	
4.5	UG Certificate	40	44	2	1
5.0	UG Diploma	80	88	4	2
5.5	Three Year Bachelor's Degree	120	132	6	3
6.0	Bachelor's Degree- Honours	160	176	8	4
	Or				
	Bachelor's Degree- Honours with				
	Research				

Credit distribution structure for Three/ Four year Honors/ Honors with Research Degree Programme with Multiple Entry and Exit

F.Y. B.Sc.

Year		Major (Core)	. Subjects	Minor	GE/	VSC, SEC		CC, FP,	Cumulative	Degree/
(Level)	Sem	Mandatory (DSC)	Elective (DSE)	Subjects (MIN)	OE OE	(VSEC)	VEC IKS	IC R:P	Credits/Sem	Cumulative Cr.
	I	DSC-1 (2T) DSC-2 (2T) DSC-3 (2P)		MIN-1 (2T) MIN-2 (2P)		SEC-1 (2T) SEC-2(1P)	AEC-1 (2T) (ENG) VEC-1 (2T) (ES) IKS (1T)	CC-1 (2)	22	UG
(4.5)	II	DSC-4 (2T) DSC-5 (2T) DSC-6 (2P)		MIN-3 (2T) MIN-4 (2P)	OE-2 (2T)	SEC-3(21) SEC 4(1D)	AEC-2 (2T) (ENG) VEC-2 (2T) (CI) IKS (1T)	CC-2 (2)	22	Certificate
	Cum. Cr.	12		8	4	6	10	4	44	

Exit option: Award of UG Certificate in Major with 44 credits and an additional 4 credits core NSQF course/ Internship OR Continue with Major and Minor.

S.Y. B.Sc.

Year (Level)	Sem	Subject-I (M-1) Major*		Subject-II (M-2) Minor #	Subject- III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
		Mandatory (DSC)	Elective (DSE)	(MIN)		, ,	, , ,				
	III	DSC-7(2T) DSC-8(2T) DSC-9(2P) DSC-10(2P)		MIN-5(2T) MIN-6(2T) MIN-7(2P)		OE-3(2T)		AEC-3(2T) (MIL)	CC-3(2T) CEP(2)	22	UG
2 (5.0)	IV	DSC-11(2T) DSC-12(2T) DSC-13(2P) DSC-14(2P)		MIN-8(2T) MIN-9(2P)		OE-4(2T) OE-5(2P)		AEC-4(2T) (MIL)	CC-4(2T)	22	Diploma
	Cum . Cr.	12		10		4	6	4 edits core NSOF co	8	44	

^{*} Student must choose one subject as a Major subject out of M-1, M-2 and M-3 that he/she has chosen at First year #Student must choose one subject as a Minor subject out of M-1, M-2 and M-3 that he/she has chosen at First year (Minor must be other than Major)

[©] OJT/Internship/CEP should be completed in the summer vacation after 4th semester

T.Y. B.Sc.

Year (Level)	Sem	Subject-I (M-1) Major		Subject- II (M-2) Minor	Subject- III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
		Mandatory (DSC)	Elective (DSE)	(MIN)							
	V	DSC-15(2T) DSC-16(2T) DSC-17(2T) DSC-18(2P) DSC-19(2P)	DSE-1A/B (2T) DSE-2A/B (2P)				VSC-1(2T) VSC-2(2P)		OJT/Int (4)	22	
3 (5.5)	VI	DSC-20(2T) DSC-21(2T) DSC-22(2T) DSC-23(2T) DSC-24(2T) IKS DSC-25(2P) DSC-26(2P)	DSE-3A/B (2T) DSE-4A/B (2P)				VSC-3(2T) VSC-4(2P)			22	UG Degree
	Cum . Cr.	24	8				8		4	44	

Fourth Year B.Sc. (Honours)

Year (Level)	Sem	Major Co	ore Subjects	Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-27(4T) DSC-28(4T) DSC-29(4T) DSC-30(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)					22	UG
IV (6.0)	VIII	DSC-31(4T) DSC-32(4T) DSC-33(4T) DSC-34(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					OJT/Int (4)	22	Honours Degree
	Cum. Cr.	28	8	4				4	44	
			Four Y	ear UG Honors Deg	ree in Major	and Mi	nor with 176 cred	lits		

Fourth Year B.Sc. (Honours with Research)

Year (Level)	Sem	Major Co	ore Subjects	Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-27(4T) DSC-28(4T) DSC-30(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)				RP(4)	22	UG
IV (6.0)	VIII	DSC-31(4T) DSC-32(4T) DSC-34(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					RP(8)	22	Honours with Research Degree
	Cum. Cr.	20	8	4				12	44	
			Four Year UG	Honours with Resea	arch Degree i	n Major	and Minor with	176 credits		

Sem- Semester, DSC- Department Specific Course, DSE- Department Specific Elective, OE/GE- Open/Generic elective, VSC- Vocational Skill Course, SEC- Skill Enhancement Course, VSEC- Vocation and Skill Enhancement Course, AEC- Ability Enhancement Course, IKS-Indian Knowledge System, VEC- Value Education Course, T- Theory, P- Practical, CC-Co-curricular RM- Research Methodology, OJT-On Job Training, FP- Field Project, Int- Internship, RP- Research Project, CEP- Community Extension Programme, ENG- English, CI-Constitution of India, MIL- Modern Indian Laguage

- Number in bracket indicate credit
- The courses which do not have practical 'P' will be treated as theory 'T'
- If student select subject other than faculty in the subjects M-1, M-2 and M-3, then that subject will be treated as Minor subject, and cannot be selected as Major at second year.

Details of S.Y. B.Sc. (Microbiology)

Course	Course		Course Title	a		hing l Weel	Hours/		Ma	rks	
	Туре	Course Code		Credits	Т	P	Total	Inter	rnal	Exte	ernal
								T	P	T	P
			Semester III, Level	-5.0	•						
DSC-7	DSC	MIB-DSC-231	Fundamentals of Microbial	2	2		2	20		30	
			Biochemistry								
DSC-8			Basic Medical Microbiology and Bio-techniques	2	2		2	20		30	
DSC-9	DSC	MIB-DSC-233	Practicals on Biochemistry and Biotechnique	2		4	4		20		30
DSC-10	DSC	MIB-DSC-234	Practicals on General Microbiology	2		4	4		20		30
MIN-5			Fundamentals of Microbial Biochemistry	2	2		2	20		30	
MIN-6			Basic Medical Microbiology and Bio-techniques	2	2		2	20		30	
MIN-7	MIN	MIB-MIN-233	Practicals on Biochemistry and Biotechnique	2		4	4		20		30
OE-3	OE	MIB-OE-231	Microbes and Environmental interactions	2	2		2	20		30	
CEP	CEP	MIB-CEP-231	Community Engagement Program	2		4	4	50			
			Semester IV, Level	-5.0	•						
DSC-11	DSC	MIB-DSC-241	Elementary Genetics and Immunology	2	2		2	20		30	
DSC-12	DSC	MIB-DSC-242	Basic Industrial Microbiology	2	2		2	20		30	
DSC-13	DSC	MIB-DSC-243	Practicals on Industrial Microbiology and Immunology	2		4	4		20		30
DSC-14	DSC	MIB-DSC-244	Practicals on Microbial Biotechnology	2		4	4		20		30
MIN-8	MIN	MIB-MIN-241	Basic Industrial Microbiology	2	2		2	20		30	
MIN-9	MIN	MIB-MIN-242	Practicals on Industrial Microbiology and Immunology	2		4	4		20		30
OE-4	OE	MIB-OE-241	Sustainable agriculture with microbes	2	2		2	20		30	
OE-5	OE	MIB-OE-242	Practicals on sustainable agriculture	2		4	4		20		30
FP	FP	MIB-FP-241	Field Project	2		4	4	50			

Examination Pattern

Theory Question Paper Pattern:

- 30 (External) +20 (Internal) for 2 credits
 - o External examination will be of 1½ hours duration
 - O There shall be 3 questions: Q1 carrying 6 marks and Q2, Q3 carrying 12 marks each. The tentative pattern of question papers shall be as follows;
 - o Q1 Attempt any 2 out of 3 sub-questions; each 3 marks
 - o Q 2 and Q3 Attempt any 3 out of 4 sub-question; each 4 marks.

Rules of Continuous Internal Evaluation:

The Continuous Internal Evaluation for theory papers shall consist of two methods:

1. Continuous & Comprehensive Evaluation (CCE): CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:

- i. Individual Assignments
- ii. Seminars/Classroom Presentations/Quizzes
- iii. Group Discussions/Class Discussion/Group Assignments
- iv. Case studies/Case lets
- v. Participatory & Industry-Integrated Learning/Field visits
- vi. Practical activities/Problem Solving Exercises
- vii. Participation in Seminars/Academic Events/Symposia, etc.
- viii. Mini Projects/Capstone Projects
- ix. Book review/Article review/Article preparation
- x. Any other academic activity
- xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that three units of the syllabus are mapped to the CCEs.
- **2. Internal Assessment Tests (IAT):** IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher is at liberty to decide which units are to be assessed using CCEs and which unit is to be assessed on the basis of IAT. The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations. The subject teachers are required to communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Practical Examination Credit 2: Pattern (30+20)

External Practical Examination (30 marks):

- Practical examination shall be conducted by the respective department at the end of the semester.
- Practical examination will be of 3 hours duration and shall be conducted as per schedule.
- Practical examination shall be conducted for 2 consecutive days for 2 hr/ day where incubation conditionis required.
- There shall be 05 marks for journal and viva-voce. Certified journal is compulsory to appear for practical examination.
- External practical examination of SEC will be of 25 marks and there will be no internal exam for SEC practical.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by department as per schedule given.
- For internal practical examination student must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and the Head of the department.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities assigned by the faculty during regular practicals. For details refer internal theory examination guidelines.
- Finally 40 (10+30) marks performance of student will be converted into 20 marks.

MIB-DSC-231: Fundamentals of Microbial Biochemistry
Hours: 30 Credits: 2

Course	To acquaint students with basic concepts of carbohydrates.	
objectives	 To understand the concepts related to protein. 	
9	To introduce the basics of lipids.	
	To learn about nucleic acid	
Course	After completion of this course, students will be able to	
outcomes	_ · · · · · · · · · · · · · · · · · · ·	
	Understand the classification and structure of proteins and amino acid.	
	Aware about structure and fuctions of lipids.	
	Compare forms and fuctions DNA and RNA	
Unit	TopicParticular	Hours
	Carbohydrates	
	Carbohydrates: Definition and general functions	
	General Classification: Mono, Oligo and Polysaccharide	
	Reactions of Monosaccharides:	
	 Tautomerization or enolization, Reducing properties, Oxidation, 	
Unit I	reduction, Dehydration, Osazone formation	7
	 Structure and roles of microbiological carbohydrates: 	,
	o Monosacharides-Glucose: Pyranose and furanose structures, Anomers—	
	mutarotation	
	 Disacharides-Maltose, Sucrose and Lactose 	
	Homopolysaccharide: starch and cellulose	
	Homopolysaccharide: Peptidoglycan	
	Proteins	
	Amino Acids	
	General structure amino acids	
	Classification of amino acids based on	
	o structure, Polarity, Nutritional capacity, and metabolic fate	
	o Selenocysteine – the 21 st amino acid	
	o Properties of amino acids: Physical and chemical	
Unit II	Proteins Definition and all formations and Depositions of markets	8
	o Definition, general functions and Properties of protein	0
	Concept of protein denaturation Classification of protein based on	
	 Classification of protein based on Functions, chemical nature, and Nutrition 	
	 Structural levels of protein organization: 	
	Primary structure: peptide bond	
	 Secondary: α-helix, β- pleated sheets 	
	Tertiary structure	
	 Quaternary structure and bonds responsible for protein structure 	
	Lipids	
	Lipid: Definition and general function	
Unit III	Classification of lipids: simple, compound/ complex, derived	7
	• Fatty acids: Occurrence, saturated v/s unsaturated fatty acids, Nomenclature	

	•	Structure and significance of fatty acids:	
		o Triglycerols: Structure, properties, Tests to check purity of fats and oils	
		 Phospholipids: Concept, Glycerophospholipids and Sphingomyelins 	
		o Glycolipids and steroids (e.g. Cholesterol)	
		o Amphipathic Lipids	
	Νι	cleic acid	
	•	Nucleic acid	
		Structural constituents of nucleic acids: nucleoside and nucleotide	
	•	DNA	
		o Structure (Watson and Crick Model), Chargaff's Rule,	
Unit IV		o Conformations of DNA double helix and unusual structures of DNA	8
		o The size of DNA molecule- Unit of length	
	•	RNA	
		o Structure of RNA	
		o Types and functions: mRNA, tRNA and rRNA	
		o Concept of ribozymes	

StudyResources

- Lehninger, A I. (2013) Principles of Biochemistry, 6th edn., Nelson, D L and Cox, M. M. (eds.) WH
 Freeman and Co., New York.
- Moat, A. and Foster, J. (2002) Microbial Physiology, 4th edn., Wiley Interscience Publications, New York.
- Stryer, L. (2001) Biochemistry, 5th edn., WH Freeman and Co., New York.
- Stanier R Y, Ingraham J L, Wheelis M L, Painter P R (1995) General Microbiology, 5th Edition, MacMillan Press Ltd., London.
- Prescott, L. M., Hartley, J. P. and Klein, D. A. (1993) Microbiology, 2nd Ed., W. M. C. Brown Publ., England
- Nicholas, C. P. and Lewis, S. (1999) Fundamentals of Enzymology, 3rd edn., oxford University Press Inc. New York
- Caldwell, D. R. (1995) Microbial Physiology and Metabolism, Brown Publishers, London
- Wiley, J. M., Sherwood, L. M. and Woolverton, C. J. (2013) Prescott's Microbiology, 9th edn., MacGraw Hill Higher Education
- Satyanaryana U (2005) Biochemistry, Books and Allied P Ltd., Kolkata

MIB-DSC-232: Basic Medical Microbiology and Bio-techniques

Hours: 30 Credits: 2

~		
Course	To complement the students with the basic knowledge of medical microbiology	
objectives	To study concept of microbial pathogensis	
	To study the advance microscopic techniques	
-	To aware about the bio analytical techniques	
Course	After completion of this course, students will be able to	
outcomes	6.16	
	Exemplify types of infections, stages of pathogenesis and antigen-antibody	
	 Understand advanced microscopy concerning principles, workings, and applicate 	
	 Understand the Principles, methods, and applications of bioanalytical techniques 	S.
Unit	TopicParticular	Hours
	Concepts in Medical Microbiology	
	 Normal flora of the human body 	
	Concept of Human microbiome	
	Portal of entry of pathogen	
	Stages of infectious diseases	
	Virulence factors: Invasiveness and Toxigenicity	
	Pattern of disease: chronic and acute	
Unit I	 Signs, symptoms and syndrome 	7
	Laboratory diagnosis	
	• Prophylaxis	
	Treatment	
	Epidemiology	
	 Concept of outbreak with example of COVID-19 	
	 Introduction to CDC and WHO; their efforts in various epidemics, 	
	pandemics and diagnosis and control of community infection	
	Microbial Pathogenesis	
	• Types of Microorganisms: Saprophytes, Parasites, Commensals, Pathogens,	
	Opportunistic pathogens	
	• Types of Infections: Primary, secondary, reinfection, cross and nosocomial	
	• Stages of Pathogenesis of Infections:	
	 Factors affecting the outcome of infection 	
	o Transmission of Infection: Sources of infections, modes of transmission,	
T I 24 TT	susceptible host	0
Unit II	 Immunity: Concept, Types (Innate, Acquired, Local and Herd) 	8
	Nonspecific and specific Immune response	
	Antigen and Antibody:	
	 Concept of antigen 	
	 Determinants of Antigenicity 	
	 Antigenic Properties: Epitopes, Isoantigens, Haptens, Superantigens 	
	 Antibodies: Structure and its types 	

	Advance Microscopy	
	Principle, working, ray diagram and applications of:	
	 Phase contrast microscopy 	
	 Fluorescence microscopy 	
	 Transmission Electron microscopy (TEM) 	
Unit III	 Scanning Electron microscopy (SEM) 	8
	 Scanning Tunneling Microscopy (STM) 	
	• Specimen preparation for TEM: Negative staining, thin sectioning (ultra-	
	microtomy)	
	• Specimen preparation for SEM: Surface replicas, Freeze etching, shadow	
	casting	
	Bioanalytical technique	
	 Principal, method and applications of 	
	 Colorimetry and Spectrophotometry 	
	 Concept of electromagnetic radiation 	
	 Absorption spectrum, Beer's and Lambert's law 	
Unit IV	 UV/ Visible spectrophotometry 	7
	Chromatography	
	Paper and Thin layer	
	- Electrophoresis:	
	 Agarose gel, Poly acrylamide gel (PAGE), SDS-PAGE 	
	rigatose get, i ory derytamide get (i riod), SDS-1 riod	

StudyResources

- 1. Kathy Talaro and Barry Chess (2012) Foundations in Microbiology, The McGraw-Hill Companies, Inc., New York.
- 2. Tortora, Funke and Case (2010) Microbiology, Brenjamin Cummings Inc., California
- 3. Stanier, R.Y., Ingraham, J.L., Wheelis M.L., Painter R.K. (1995) General Microbiology, MacMillan Press Ltd. London.
- 4. Frobisher M. (1974) Fundamentals of Microbiology, Hinsdill, Crabtree and Goodheart Ed., WB Saunder's Co. USA.
- 5. Pelczar M J, Chan E C S, Krieg N R (1998) Microbiology Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Modi H. A. (1995) Elementary Microbiology 1 and 2, EktaPrakashan, Ahmedabad
- 7. Wilson K and Walker J (2006)Principles and techniques of practical biochemistry (5th Ed.):Cambridge University Press, Cambridge,
- 8. Frontmatter. (2018). In A. Hofmann & S. Clokie (Eds.), Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology (pp. I-Iv). Cambridge: Cambridge University Press.
- 9. Upadhyay A, Upadhyay K., Nath N. (1998) Biophysical chemistry: Principal and techniques, Himalaya Publishing House. Mumbai
- 10. Sivasankar B (2005) Bioseparations: Principal and techniques, Printice-Hall of India Pvt. Ltd. New Delhi
- 11. Bajpai P. K. (2006) Biological instrumentation and methodology, S. Chand, New Delhi
- 12. Marimuthu R. (2008) Microscopy and microtechnique, MJP publisher, Chennai

MIB-DSC-233:Practicals on Biochemistry and Biotechnique
Hours: 60
Credits: Credits: 2

Course Objectives	 To study the structural details of microbial cell To analyse the water quality, microflora of skin 	
	 To study various microbial enzymes and biotechniques 	
Course Outcomes	 After completion of this course, students will be able to Understand the staining methods to visualize the microbial cell Analyze water quality, skin flora Perform screening of microbe for enzyme and analyze using biotechnique. 	s
Sr. No.	Contents	Hours
1	Cell wall staining by any suitable method.	4
2	Flagella staining by any suitable method.	4
3	Volutine granules are stained using any suitable method.	4
4	Nucleus staining by any suitable method.	4
5	Study of skin microflora using swab technique	4
6	The presumptive Coliform test is used to check the potability of water (MPN).	4
7	Confirmed and completed Coliform test to assess the potability of water.	4
8	Detection of microbial enzymes from microbes: Amylase, Lipase, Gelatinase.	4
9	Detection of microbial enzymes from microbes: Catalase, Urease, Coagulase.	4
10	Enzyme activity assay (amylase/ protease/ cellulase)	4
11	Qualitative test for sugar, protein and lipids	4
12	Preparation of standard curve of protein using Folin-Lowery method	4
13	Separation of amino acid by paper chromatography	4
14	Handling and calibration of pipette, volumetric flask and pH meter and demonstration of handling of micropipette	4
15	Demonstration of UV-Vis spectrophotometer / Phase contrast microscope	4
Study Resources	Alcamo, I.E. (2001) Laboratory Fundamentals of Microbiology, Jones and Bartlett,	
	• Aneja, K.R (1996) Experiments in Microbiology, 3rd edition, WishwaPrakashan, New Delhi.	
	• Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New York.	
	 Dubey, R.C. and Maheshwari D. K (2004) Practical Microbiology, S. Chand and Co., New Delhi. 	
	 Harley, J.P. and Prescott, L.M (1996) Laboratory Exercise in Microbiology, 3rd edition, WCB/McGraw Hill. 	
	 Jayaraman, I. (1981) Laboratory Manual in Biochemistry, Wiley Eastern Ltd., New Delhi. Norris, J.P. (1960) Methods in Microbiology Vol. J. 1st Edn. Academic 	
	 Norris, J.R. (1969) Methods in Microbiology Vol. I, 1st Edn. Academic Press Inc., London. Parija, S.C. (2007) Textbook of Practical Microbiology, Ahuja Publishing 	
	- 1 mija, 5.c. (2007) Textbook of Fractical Microbiology, Anuja Fublishing	

House, New Delhi.	
Plummer, D.T. (1992) An Introduction to Practical Biochemistry, Tata	
McGraw Hill Publisher, New Delhi.	
Sharma, K. (2007) Manual of Microbiology Tools and Techniques, Anne's	

Note: At least 12 experiments should be performed.

Book India, New Delhi.

MIB-DSC-234:Practicals on General Microbiology

Hours: 60 Credits: 2 Course To study basic stain preparations and specimain mounting **Objectives** To perform microscopic observations of allied specimens To study experiments related to medical microbiology After completion of this course, students will be able to Course **Outcomes** Perform stain preparation and observe the algal and fungal mount Infer the microscopic observations Analyze blood groups and isolate microflora Contents Hours Sr. No. Preparation of stains, mordant, and mounting media: Methylene blue, 4 Crystal violet, Safranin, Nigrosin, CarbolFuchsin, Malachite green, and Gram's iodine. 2 Staining and mounting of algae (e.g., Spirogyra/ Nostoc) 4 3 Staining and mounting of fungi (e.g., Rhizopus/ Aspergillus) 4 Microscopic measurements of microorganisms/ spores using stage and 4 ocular micrometre Observation of bacterial motility by swarming growth method. 5 4 Study of root nodules for bacteroids 4 6 7 Collection of infected plant specimens and observations 4 8 Isolation of skin microflora 4 9 Isolation of mouth microflora 4 10 4 Effect of dye on microbial growth 11 Evaluation of alcohol as a skin disinfectant 4 12 Secondaryscreening of antibiotic producers using the giant colony 4 technique 13 Plotting of graph using given readings of experiment 4 14 Use of LAF/ biosafetycabinet 4 15 Visit of central instrumentation laboratory 4 Study Alcamo, I.E. (2001) Laboratory Fundamentals of Microbiology, Jones and Resources Bartlett, Aneja, K.R (1996) Experiments in Microbiology, 3rd edition. WishwaPrakashan, New Delhi. Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New York. Dubey, R.C. and Maheshwari D. K (2004) Practical Microbiology, S. Chand and Co., New Delhi. Harley, J.P. and Prescott, L.M (1996) Laboratory Exercise in Microbiology, 3rd edition, WCB/McGraw Hill. Norris, J.R. (1969) Methods in Microbiology Vol. I, 1st Edn. Academic Press Inc., London. Parija, S.C. (2007) Textbook of Practical Microbiology, Ahuja Publishing House, New Delhi.

Note: At least 12 experiments should be performed.

MIB-MIN-231: Fundamentals of Microbial Biochemistry
Hours: 30 Credits: 2

Course objectives	 To acquaint students with basic concepts of carbohydrates. To understand the concepts related to protein. 	
	To introduce the basics of lipids.To learn about nucleic acid	
Course outcomes	 After completion of this course, students will be able to Cognizant of the basic structure, classification and functions of carbohydrates. Understand the classification and structure of proteins and amino acids. Aware of the structure and functions of lipids. Compare forms and functions of DNA and RNA 	
Unit	TopicParticular	Hours
Unit I	 Carbohydrates Carbohydrates: Definition and general functions General Classification: Mono, Oligo and Polysaccharide Reactions of Monosaccharides: Tautomerization or enolization, Reducing properties, Oxidation, reduction, Dehydration, Osazone formation Structure and roles of microbiological carbohydrates: Monosacharides-Glucose: Pyranose and furanose structures, Anomers—mutarotation, Disacharides-Maltose, Sucrose and Lactose, Homopolysaccharide: starch and cellulose Homopolysaccharide: Peptidoglycan 	7
	Proteins	
Unit II	 Amino Acids General structure, and properties (Physical and chemical) of amino acids Classification of amino acids based on structure, Polarity, Nutritional capacity, and metabolic fate Selenocysteine – the 21st amino acid Proteins Definition and general functions of protein Properties of proteins and denaturation concept Classification of protein based on Functions, chemical nature, and Nutrition Structural levels of protein organization:	8
	 Quaternary structure and bonds responsible for protein structure 	
Unit III	 lipids Lipid: Definition and general function Classification of lipids: simple, compound/ complex, derived Fatty acids: Occurrence, saturated v/s unsaturated fatty acids, Nomenclature 	7

	•	Structure and significance of fatty acids:	
		o Triglycerols: Structure, properties, Tests to check the purity of fats and	
		oils	
		 Phospholipids: Concept, Glycerophospholipids and Sphingomyelins 	
		 Glycolipids and steroids (e.g. Cholesterol) 	
		o Amphipathic Lipids	
	Nı	ucleic acid	
	•	Nucleic acid	
		 Structural constituents of nucleic acids: nucleoside and nucleotide 	
• DNA		DNA	
		 Structure (Watson and Crick Model), Chargaff's Rule, 	
Unit IV		 Conformations of DNA double helix and unusual structures of DNA 	8
		 The size of DNA molecule- Unit of length 	
	•	RNA:	
		 Structure of RNA 	
		 Types: mRNA, tRNA and rRNA 	
		 Concept of ribozymes 	

References

- Lehninger, A I. (2013) Principles of Biochemistry, 6th ed., Nelson, D L and Cox, M. M. (eds.) WH Freeman and Co., New York.
- Moat, A. and Foster, J. (2002) Microbial Physiology, 4th ed., Wiley Interscience Publications, New York.
- Stryer, L. (2001) Biochemistry, 5th ed., WH Freeman and Co., New York.
- Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1995) General Microbiology, 5th Edition, MacMillan Press Ltd., London.
- Prescott, L. M., Hartley, J. P. and Klein, D. A. (1993) Microbiology, 2nd Ed., W. M. C. Brown Publ.,
 England
- Nicholas, C.P. and Lewis, S. (1999) Fundamentals of Enzymology, 3rd ed., Oxford University Press Inc. New York
- Caldwell, D.R. (1995) Microbial Physiology and Metabolism, Brown Publishers, London
- Wiley, J.M., Sherwood, L.M. and Woolverton, C.J. (2013) Prescott's Microbiology, 9th ed., MacGraw Hill Higher Education
- Satyanaryana U (2005) Biochemistry, Books and Allied P Ltd., Kolkata

MB-MIN-232: Basic Medical Microbiology and Bio-techniques

Hours: 30 Credits: 2

Course objectives	 To complement the students with the basic knowledge of m microbiology 	edical				
	To study the concept of microbial pathogenesis					
	To study the advanced microscopic techniques					
	To be aware of the bio-analytical techniques					
Course	After completion of this course, students will be able to					
outcomes	 Cognizant of different basic terminologies related to medical microbiology. 					
	 Exemplify types of infections, stages of pathogenesis and antigen-antibod 	ly				
	 Understand advanced microscopy concerning principles, workings 	, and				
	applications.					
	• Understand the Principles, methods, and applications of bioana	lytical				
	techniques.					
Unit	TopicParticular	Hours				
	Concepts in Medical Microbiology					
	 Normal flora of the human body 					
	Concept of Human microbiome					
	Portal of entry of pathogen					
	Stages of infectious diseases					
	 Virulence factors: Invasiveness and Toxigenicity Pattern of disease: chronic and acute 					
Unit I	 Pattern of disease: chronic and acute Signs, symptoms and syndrome 	7				
Omt 1	 Signs, symptoms and syndrome Laboratory diagnosis 	/				
	Prophylaxis					
	• Treatment					
	Epidemiology					
	Concept of outbreak with example of COVID-19					
	 Introduction to CDC and WHO; their efforts in various epidemics, 	,				
	pandemics and diagnosis and control of community infection					
	Microbial Pathogenesis					
	• Types of Microorganisms: Saprophytes, Parasites, Commensals, Pathogens,					
	Opportunistic pathogens					
	• Types of Infections: Primary, secondary, reinfection, cross and nosocomial					
	 Stages of Pathogenesis of Infections: 					
	 Factors affecting the outcome of infection 					
Unit II	o Transmission of Infection: Sources of infections, modes of transmission,	8				
	susceptible host					
	 Immunity: Concept, Types (Innate, Acquired, Local and Herd) 					
	Antigen and Antibody:					
	 Concept of antigen 					
	 Determinants of Antigenicity 					
	o Antigenic Properties: Epitopes, Isoantigens, Haptens, Superantigens					

	Antibodies: Structure and its types	
_	Advance Microscopy	
	Principle, working, ray diagram and applications of :	
	 Phase contrast microscopy 	
	 Fluorescence microscopy 	
	 Transmission Electron microscopy (TEM) 	
Unit III	 Scanning Electron microscopy (SEM) 	8
	 Scanning Tunneling Microscopy (STM) 	
	• Specimen preparation for TEM: Negative staining, thin sectioning (ultra-	
	microtomy)	
	 Specimen preparation for SEM: Surface replicas, Freeze etching, shadow 	
	casting	
	Bioanalytical technique	
	Principal, method and applications of	
	 Colorimetry and Spectrophotometry 	
	 Concept of electromagnetic radiation 	
Unit IV	 Absorption spectrum, Beer's and Lambert's law 	7
	 UV/ Visible spectrophotometry 	
	Chromatography: Paper and Thin layer	
	Electrophoresis: Agarose gel, Poly acrylamide gel (PAGE), SDS-PAGE	

References

- Kathy Talaro and Barry Chess (2012) Foundations in Microbiology, The McGraw-Hill Companies, Inc., New York.
- Tortora, Funke and Case (2010) Microbiology, Brenjamin Cummings Inc., California
- Stanier, R.Y., Ingraham, J.L., Wheelis M.L., Painter R.K. (1995) General Microbiology, MacMillan Press Ltd. London.
- Frobisher M. (1974) Fundamentals of Microbiology, Hinsdill, Crabtree and Goodheart Ed., WB Saunder's Co. USA.
- Modi H. A. (1995) Elementary Microbiology 1 and 2, EktaPrakashan, Ahmedabad
- Wilson K and Walker J (2006)Principles and techniques of practical biochemistry (5th Ed.):Cambridge University Press, Cambridge,
- Frontmatter. (2018). In A. Hofmann & S. Clokie (Eds.), Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology (pp. I-Iv). Cambridge: Cambridge University Press.
- Upadhyay A, Upadhyay K., Nath N. (1998) Biophysical chemistry: Principal and techniques, Himalaya Publishing House. Mumbai
- Sivasankar B (2005) Bioseparations: Principal and techniques, Printice-Hall of India Ltd. New Delhi
- Bajpai P. K. (2006) Biological instrumentation and methodology, S. Chand, New Delhi
- Marimuthu R. (2008) Microscopy and microtechnique, MJP publisher, Chennai

MIB-MIN-233: Practicals on Biochemistry and Biotechnique

Hours: 60 Credits: 2 To study the structural details of microbial cell Course objectives To analyse the water quality, microflora of skin To study various microbial enzymes and biotechniques After completion of this course, students will be able to Course outcomes Understand the staining methods to visualize the microbial cell Analyze water quality, skin flora Perform screening of microbe for enzyme and analyze using biotechniques 1 Cell wall staining by any suitable method. Flagella staining by any suitable method. 4 3 Volutine granules are stained using any suitable method. 4 4 Nucleus staining by any suitable method. 4 5 Study of skin microflora using swab technique 4 The presumptive Coliform test is used to check the potability of water 6 4 (MPN). 7 Confirmed and completed Coliform test to assess the potability of water. 4 Detection of microbial enzymes from microbes: Amylase, Lipase, 4 Gelatinase. 9 Detection of microbial enzymes from microbes: Catalase, Urease, 4 Coagulase. 10 Enzyme activity assay (amylase/ protease/ cellulase) 4 11 Qualitative test for sugar, protein and lipids 4 12 Preparation of standard curve of protein using Folin-Lowery method 4 13 Separation of amino acid by paper chromatography 4 14 Handling and calibration of pipette, volumetric flask and pH meter and 4 demonstration of handling of micropipette 15 Demonstration of UV-Vis spectrophotometer / Phase contrast microscope 4 References 1. Alcamo, I.E. (2001) Laboratory Fundamentals of Microbiology, Jones and Bartlett, 2. Aneja, K.R (1996) Experiments in Microbiology, 3rd edition, WishwaPrakashan, New Delhi. 3. Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New York. 4. Dubey, R.C. and Maheshwari D. K (2004) Practical Microbiology, S. Chand and Co., New Delhi. 5. Harley, J.P. and Prescott, L.M (1996) Laboratory Exercise in Microbiology, 3rd edition, WCB/McGraw Hill. 6. Jayaraman, I. (1981) Laboratory Manual in Biochemistry, Wiley Eastern Ltd., New 7. Norris, J.R. (1969) Methods in Microbiology Vol. I, 1st Edn. Academic Press Inc., London. 8. Parija, S.C. (2007) Textbook of Practical Microbiology, Ahuja Publishing House, New Delhi. Plummer, D.T. (1992) An Introduction to Practical Biochemistry, Tata McGraw Hill Publisher, New Delhi.

10. Sharma, K. (2007) Manual of Microbiology Tools and Techniques, Anne's Book India, New Delhi.

S.Y. B.Sc. (Microbiology)

Semester-III

MIB-OE-231Microbes and Environmental Interactions

Hours: 30)	Credits:	2
Course	•	To acquaint students with basic concepts of Microbial Ecology and Interacti	ons
objectives	•	To highlight the importance of air microbiology.	
	•	To impart the knowledge of soil microbiology.	
	•	To describe the critical preventative and monitoring microbiological qua	ality of
		water.	
Course	A	fter completion of this course, students will be able to	
outcome	S	Learn the importance of microbial interaction in the ecosystem	
	•	understand the skill sets in assessment and enumeration of air	
	•	Aware of the biogeochemical cycles and ecological aspects of microbiology	•
	•	Understand the concepts of pollution, indicator bacteria, water and air-	-borne
		diseases	
Unit		TopicParticular	Hours
	M	licrobial Ecology and Interactions	
	•	Concept of microbial ecology and types of microbial interactions	
		 Positive and Negative: Mutualism, Cooperation, Commensalism, 	
Unit I		Predation, Ammensalism	8
	•	Concept, establishment (Direct and Re-infection) and importance of	
		symbiosis	
	•	Examples of Microbial interactions:	
		 Legume-rhizobium, Lichen, Ruminantsymbiosis 	
	A	ir microbiology	
	•	Terminologies in aero microbiology: Bio-aerosols, droplet nuclei, air-	
		borne microbes, allergens	
	•	Significance in human health, environmental, food and pharmaceutical	_
Unit II		industries, and surgical operations.	7
	•	Techniques for microbial sampling of air from various sources, aerosol	
		sampling, fate of aerosols	
	•	Airborne transmission of microbes, their diseases and preventive control	
	Ç,	measures	
	50	oil microbiology Soil horizons, classification of soils and Rhizosphere microflora	
Unit III		Biogeochemical cycles: C, P, N, S	8
		Enumeration of soil microflora by different techniques	
	XX	Vater microbiology	
	"	Water ecosystem: Freshwater, Marine water	
		Microflora of water	
Unit IV			7
		Assessment of water and potability of water: TVC, MPN Indicator bacteria: <i>E. coli</i>	
	•	Waterborne diseases and their control measures: Cholera, Typhoid	

References

- Clesceri L S., Greenberg, A. E, and Eaton A. D. (1998) Standard Methods for Examination of Water and Wastewater, 18th Edition, American Public Health Association, Washington.
- Maier R. M., pepper, I. L. and Gerba, C. P. (2009) Environmental Microbiology, 2nd ed., Academic

Press, NY.

- Salle, S. J. (1974) Fundamental Principals of Bacteriology, 2nd edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- SubbaRao, N. S. (1999) Soil Microbiology, 4th edn., Oxford and IBH Publ. Co., New Delhi.
- Coyne, M. S. (2001) Soil Microbiology: An Exploratory Approach, Delmar Thomson Learning.
- Alexander, M. (1977) Introduction to Soil Microbiology, John Wiley and Sons Inc. New York.
- Bums, R. G. and Slater, J.H. (1982) Experimental Microbial Ecology, Blackwell Scientific Publ., Oxford.
- Atlas, R. M. and Bartha, R. (2000) Microbial Ecology, 4th ed., Benjamin/Cumming Science Publ., USA

MIB-CEP-231: Community Engagement Program

Hours: 60 Credits: 2

In alignment with the National Education Policy (NEP) 2020, Moolji Jaitha College (Autonomous), Jalgaon is introducing the Community Engagement Program at the undergraduate level. The NEP 2020 emphasizes holistic development, inclusivity, and integrating vocational education with academic learning, aiming to nurture socially responsible individuals. Inspired by NEP 2020, the Community Engagement Program aim to produce knowledgeable, compassionate, and proactive graduates, contributing to a more just, equitable, and sustainable society. This course fosters a strong connection between education and socioeconomic problems of real-world. Students will learn about the challenges faced by vulnerable households and appreciate local wisdom and lifestyles.

Objectives

- To engage students in activities that promote emotional, social, and intellectual growth, fostering a well-rounded approach to personal and academic development.
- To provide hands-on experiences that complement classroom learning, enabling students to apply their knowledge in socioeconomic problems of real-world.
- To instil a sense of responsibility towards the community by encouraging students to actively participate in social and environmental initiatives, appreciate rural culture, lifestyle, and wisdom.

Outcomes

After completing this course, students will be able to

- Understand rural and/or urban culture, ethos, and socioeconomic realities.
- Develop a sense of empathy with the local community while appreciating the significant contributions of local communities to society and the economy.
- Learn to value the local community wisdom and identify opportunities for contributing to the community's socioeconomic improvements.

Activities

- Conduct workshops and interactive sessions on emotional intelligence and social skills.
- Organize debates, discussions, and intellectual challenges that stimulate critical thinking and socioeconomic problem-solving using concern subject.
- Organize field visits where students can work on real-world problems, such as environmental conservation, rural and/or urban planning, or community health.
- Organize internships or service-learning opportunities with local businesses, NGOs, or government agencies.
- Facilitate project-based learning activities that require students to use their academic knowledge to develop solutions to community issues.
- Engage students in community service activities that address local social and environmental issues.

- Organize cultural exchange programs or field trips to rural areas to foster an appreciation of rural culture and wisdom.
- Facilitate collaborative projects involving students, educators, and community members to develop solutions for local challenges, promoting teamwork and collective problem-solving.
- Conduct educational sessions on the status of various agricultural and development programs and the challenges faced by vulnerable households, ensuring inclusivity and accessibility for all students.

S. No.	Module Title	Module Content	Assignment submission	Teaching/ Learning Methodology
1	Appreciation of Rural Society	Rural lifestyle, rural society, caste and gender relations, rural values with respect to community, nature and resources, elaboration of "soul of India lies in villages", rural infrastructure.	Prepare a map	Classroom discussionsField visitAssignment
2	Understanding rural and local economy and livelihood	Agriculture, farming, land ownership, water management, animal husbandry, non-farm livelihoods and artisans, rural entrepreneurs, rural markets, migrant labour.	Describe your analysis of the rural house hold economy, its challenges and possible pathways to address. Circular economy and	Field visitGroup discussions in classAssignment
3	Rural and local Institutions	Traditional rural and community organisations, Self-help Groups, Panchayati raj institutions (Gram Sabha, Gram Panchayat, Standing Committees), Nagarpalikas and municipalities, local civil society, local administration.	migration patterns. How effectively are Panchayati Raj and	ClassroomField visitGroup presentation of assignment
4	Rural and National Development Programmes	History of rural development and current national programmes in India: SarvaShikshaAbhiyan, BetiBachao, BetiPadhao, Ayushman Bharat, Swachh Bharat, PM AwaasYojana, Skill India, Gram Panchayat Decentralised Planning, National Rural Livelihood Mission (NRLM), Mahatma Gandhi National Rural Employment Guarantee Act 2005 (MGNREGA), SHRAM, Jal Jeevan	or audio-visual). Describe the benefits	 Classroom Each student selects one program for field visit Written assignment

Mission, Scheme of Fund for Regeneration of Traditional Industries (SFURTI), AtmaNirbhar Bharat, etc.

Note: The modules are suggestive in nature and students can opt any one activities for community engagement program and field project based on topic appropriate to their regional community context.

Assessment:

- •Readings from related literature including e-content and reflections from field visits should be maintained by each student in the form of Field Diary (20 Marks)
- •Submission of assignments based on modules assignment submission (details mentioned above) (20 Marks)
- •Oral/ Group discussion/ Presentation (10 Marks)

MIB-DSC-241:Elementary Genetics and Immunology Hours: 30 Credits: 2

~				
Course	 To acquaint students with basic concepts of microbial genetics. 			
objectives				
	 To introduce the basics of microbial infection and immunology. 			
	To study the antigen and antibody reactions			
Course	After completion of this course, students will be able to			
outcomes	 aware of the basic concepts of genomics related to pro and eukaryotic 			
	• understand the concepts of genetic code, mutation and repair mechanism			
	 awareof the essential topics related to infection and immunology 			
	 Apply appropriate immunological reactions for diagnosis 			
Unit	TopicParticular	Hours		
	Genes and chromosomes			
	• Concepts in basic genetics: gene, allele, genome, genotype, phenotype,			
	cistron, intron, exon, haploid, diploid, partially diploid, homologous, and			
	heterologous.			
	Prokaryotic genetic material:			
Unit I	 Typical structure of chromosome 	8		
Omt 1	o Plasmid: Concept, types and properties	0		
	Eukaryotic chromosome			
	 Structural organization 			
	 Concept of : Euchromatin and Heterochromatin 			
	 Chromosome variation: Euploidy, Aneuploidy, Polyploidy 			
	 Genetic code and its properties 			
	Mutations			
	Concept and significance of mutation			
	• Types of mutation: Base pair substitutions (transition, transversion),			
	deletion, inversion, insertions missense, nonsense, neutral, silent,			
	frameshift, reverse and suppressor mutations			
	• Spontaneous mutations: mechanism			
Unit II	Induced mutations: Physical	7		
	o Radiation: UV, Gamma, and X-rays,			
	o Chemical: Base analogues, deaminating agents, alkylating agents,			
	intercalating agents)			
	 Methods to study/screen mutation: 			
	 Fluctuation test, Replica plate technique, Ames test 			
	Repair of Mutation: photoactivation, excision repair			
	Immune Cells and organs			
	• Immune cells: stem cell, T cell, B cell, NK cell, Macrophages, Dendritic			
	cell			
Unit III	Organs involved in the immune response:	8		
	 Primary (Bone marrow, thymus), 			
	 Secondary (lymph node, spleen, GALT, payers patches) 			
	• Immune response: Non-specific, specific immune response, Humoral and			
	- infinitional response. Intilioral and	<u> </u>		

	cell-mediated	
	 Variouslymphoid tissues: MALT, NALT, GALT, and BALT. 	
	Lymphocyte traffic and recirculation	
	Antigen-Antibody Reactions	
	General Features:	
	o Physicochemical Properties: Affinity, Avidity, Specificity, Cross-	
	Reactivity,	
	Stages of Antigen-Antibody Reactions: Primary and Secondary	
Unit IV	• Types of Antigen-Antibody Reactions:	7
Cint 1	 Precipitation: Features and its types 	,
	o Agglutination: Features and its types- Slide agglutination test,	
	Antiglobulin (Coombs') test&Latex agglutination test	
	 Complement-Dependent Serological Tests 	
	 Concept of Opsonization 	
	 Immunofluorescence: Direct and indirect 	

References

- Wiley, J M, Sherwood, L M and Woolverton, C J. (2013) Prescott's Microbiology. 9th Edition. McGraw Hill International, New York.
- Madigan M T, Martinko J M, Dunlap P V and Clark D P. (2014) Brock Biology of Microorganisms, 14th edition, Pearson International Edition, New Delhi
- Tortora, Funke and Case (2010) Microbiology, 10th edition, Brenjamin Cummings Inc, California.
- Modi, H. A. (2014) Elementary Microbiology, Vol. 1 and 2, AksharPrakashan, Ahmedabad.
- Pawar, C B, and Daginawala, HF. (1998) General Microbiology, Vol. I and II, 1st edition, Himalaya Publishing House, Mumbai.
- Ananthanarayan, P., Paniker, C. K. J. (1990) Textbook of Microbiology, Orient Longman, Madras.
- Kimball, J. W. (1990) Introduction to Immunology, MacMillan Publishing Company, New York.
- Kuby, J. W. H. (1994) Immunology, W.H. Freeman and Company, New York.
- Riott, I.M. (1998) Essential Immunology, ELBS Blackwell Scientific Publications, Oxford
- Maloy, S.R., Freifelder, D. and Cronan, J.E. (1994) Microbial Genetics, 2nd ed., Jones and Bartlett Publishers
- Chaudhari Keya (2014) Microbial Genetics, TERI Press, New Delhi ISBN: 9788179933237
- Abbas A K, Lichtman A H, Pillai S. (2007) Cellular and Molecular Immunology, 6th edition, Saunders Publication, Philadelphia
- Parija S.C. (2012), Textbook of Microbiology and Immunology, 2nd Edition, ELSEVIER, *A division of* Reed Elsevier India Private Limited, New Delhi
- Generalov I.I. (2016), Medical Microbiology, Virology & Immunology (Part 2 Medical Bacteriology & Medical Virology), VSMU Press, Vitebsk
- Kayser F.H. et al (2005), Medical Microbiology, Thieme Stuttgart, New York

MIB-DSC-242:Basic Industrial Microbiology

Hours: 30)	Credits:	2
Course	•	To acquaint students with basic concepts of industrial microbiology.	
objectives	•	To understand the process parameters and types of fermentation	
	•	To infer the upstream and downstream processes in fermentation	
		To make the students know about effluent treatments	
Course	Δí	fter completion of this course, students will be able to	
outcomes	•	Understand the process of screening important microbes and de fermentation media.	signing
	•	Comprehend the basic fermenter design and overall fermentation process.	
	•	Be acquainted with diverse downstream processing after the fermentation pr	ocess
	•	Apply appropriate approach for effluent management.	
Unit	-		Hours
UIII	_	TopicParticular	nour
		asics of fermentation technology and upstream processing	
	•	Characteristics of industrial strains	
	•	Screening of industrially essential microorganisms: Primary and	
		Secondary screening examples: vitamin, antibiotic producers	
	•	Concept of strain improvement	
	•	Microbial culture:	
		 Culture collection centres and their role: National (NCIM) International (ATCC) Preservation of microorganisms: Soil culture, Oil overlay, Liquid 	
		nitrogen freezing, Lyophilization	
Unit I		 Working and stock culture 	8
	•	Inoculum: characteristics, acclimatization, Inoculum development	
	•	Fermentation media:	
	•	Basic composition	
		 Criteria for selection and screening of media 	
		 Types of media: synthetic, complex and natural 	
		o Major raw materials: Carbohydrates, oils & fats, Corn steep Liquor,	
		Soy meals, Molasses, Sulphite liquors,	
		o Minor ingredients: growth factors, precursors, buffers, water, antifoam	
		agentSterilization: batch, continuous	
	Fo	ermentation equipment and process	
	1,6	Fermenter:	
		Criteria for fermenter design	
		o Structure of a Typical Fermenter and its parts Impeller, baffles,	
Unit II		sparger, stuffing box, to	7
		o Measurement and control of fermentation parameters: pH,	
		temperature, dissolved oxygen, foaming and aeration	
	•	Fermentation process:	
		o Submerged: Batch, Continuous, Fed-batch, continuous	

	 Solid state fermentation: concept, characteristics and applications 	
	 Anaerobic versus aerobic fermentation 	
	 Immobilized cell/enzyme bioreactor 	
	 Example of Fermentation: Alcohol production 	
	Downstream processing	
	Recovery of fermentation products	
	 Criteria for choice of recovery process 	
	 Cell removal for recovery of product: 	
	 Precipitation 	
	o Filtration: Theory of filtration, Filter aid, Batch Filter (e.g.	
	Plate & Frame filter), Continuous Filter (e.g. Rotary vacuum	
	filter)	
Unit III	 Centrifugation: Theory, Basket, Tubular bowl, Multi-chamber 	8
	 Cell aggregation and flocculation 	
	 Cell disruption: Mechanical, Physical and Chemical methods 	
	 Liquid-Liquid extraction: Co-current and Counter current extraction, 	
	 Distillation: Batch and Continuous 	
	Purification of fermentation products:	
	o Chromatography: Ion exchange, Adsorption, Affinity chromatography	
	 Membrane process: Ultrafiltration, Reverse Osmosis, 	
	Effluent treatment	
	Disposal of effluent:	
	 Sea and rivers, lagoons, spray irrigation, well disposal and landfilling 	
	• Treatment Processes:	
	Physical Treatment	
T7 *4 TX7	Chemical Treatment	-
Unit IV	o Biological Treatment:	7
	o Aerobic processes: Trickling Filters, Biologically Aerated Filters	
	(BAFS), Towers, Fluidized-Bed Systems	
	o Anaerobic processes: Anaerobic Digestion, Anaerobic Digesters,	
	Anaerobic Filters, Up-Flow Anaerobic Sludge Blankets (UASB)	
	By-products of distilleries and breweries	
1		

References

- Casida, L.E (1998) Industrial Microbiology New Age International Publishers, New Delhi
- Crueger, W. and Crueger, A. (2000) Biotechnology: A Textbook of Industrial Microbiology, PanimaPubl Co., New Delhi
- Stanbury, P.F., Whitaker, A. and Halt G. (1995) Principles of Fermentation Technology, Pergamon Press, New York.
- Whitaker, A. and Stanbury, P.F. (1995) Principles of Fermentation Technology, Butterworth-Heinemann
- Patel A. H. (1996); Industrial Microbiology McMillan Publication, New Delhi.
- Prescott S.C and Dunn C.G. (1983) Industrial Microbiology, McGraw Hill Book Co. Inc., New York.
- Tortora, Funke and Case (2010) Microbiology, Brenjamin Cummings Inc., California
- Stainer, R.Y., Ingraham, J.L., Wheelis M.L., Painter R.K. (1995) General Microbiology, MacMillan Press Ltd., London.
- Singh B. D. (2008) Biotechnology: exploring horizons, Kalyani publishers, Ludhiana
- Modi H.A., (2009), 'Fermentation Technology', Vol.1 & 2, Pointer publications, India

MIB-DSC-243: Practicals on Industrial Microbiology and Immunology

Hours: 60 Credits: 2 To study screening methods for industrially important microbes Course objectives To understand the recovery and analysis of fermented products To study the immunotechniques and diagnostic microbiology After completion of this course, students will be able to Course outcomes Understand the basics of screening of microbes for industry Recover and anlyze the fermentation product Detect blood groups and perform cross-matching. Infer the diagnostic/immune techniques in medical microbiology Screening of antibiotic-producing microbes by Crowded plate technique 1 4 2 Screening of organic acid-producing microbes using the indicator dye 4 method. 3 Estimation of acetic acid from vinegar by titrimetric method. 4 4 Determination of alcohol concentration in given fermented broth 4 5 Recovery of organic acid from fermentation broth 4 Detection of organic acid using Paper chromatography / Thin Layer 6 4 chromatography Cultivation of fungi using solid-state fermentation (Plate method) 7 4 8 Determination of ABO and Rh blood group 4 9 Study of cross-matching of blood for transfusion. 4 10 Total WBC count using haemocytometer from whole blood 4 11 Study of double diffusion technique by Ouchterlony 4 12 Dot enzyme-linked immunosorbent assay (Dot ELISA). 4 13 Demonstration of cell immobilization 4 14 Demonstration of a typical fermenter 4 15 Field visit / industrial visit to effluent treatment plant References Aneja, K.R. (1996) Experiments in Microbiology, 3rd edition, WishwaPrakashan, New Delhi. Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New York. Dubey, R.C. and Maheshwari D.K. (2004) Practical Microbiology, S. Chand and Co., New Delhi. Harley, J.P. and Prescott, L.M. (1996) Laboratory Exercise in Microbiology, 3rd ed., WCB/McGraw Hill Publ. Co., London Jayaraman, I (1981) Laboratory Manual in Biochemistry, Wiley Eastern Ltd., New Delhi. Norris, J.R. (1969) Methods in Microbiology Vol. I, 1st edition, Academic Press Inc., London. Parija, S.C. (2007) Textbook of Practical Microbiology, Ahuja Publishing House, New Delhi.

Plummer, D.T. (1992) An Introduction to Practical Biochemistry, Tata McGraw Hill

Publisher, New Delhi.

S.Y. B.Sc. (Microbiology)

Semester-IV

MIB-DSC-244: Practicalson Microbial Biotechnology

Credits: 2 Hours: 60 To studythe effect of environment on microbial growth Course objectives To understand the basics of DNA and mutation To study the experiments related to microbial biotechnology Course After completion of this course, students will be able to Understand the effect of environmental factors such as salt, sugar and UV outcomes To Appraise the basics of DNA, mutation and its screening Infer the applied aspects of microbiology 1 4 Effect of salt concentration on microbial growth 2 4 Effect of sugar on yeast cultivation 3 4 Induction of mutation by UV radiation. 4 4 Gradient plate technique 5 4 Replica plate technique to isolate the mutant 4 6 Isolation of DNA from onion Preparation of paper model of DNA 8 4 Microscopic observation of spoiled food/fruit 9 4 Preparation of buffer (anyone) 10 4 Calibration of laboratory pipettes 11 4 Preparation of SOP for hot air oven and incubator 12 4 Pasteurization of milk/fruit juice and check the efficacy 13 4 Isolation of microbes from phyllosphere (plant surface) 14 4 Demonstration of Koch's postulate using fruit 15 Demonstration of agarose gel electrophoresis References Aneja, K.R. (1996) Experiments in Microbiology, 3rd edition, WishwaPrakashan, New Delhi. Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New York. Dubey, R.C. and Maheshwari D.K. (2004) Practical Microbiology, S. Chand and Co., New Delhi. Harley, J.P. and Prescott, L.M. (1996) Laboratory Exercise in Microbiology, 3rd ed., WCB/McGraw Hill Publ. Co., London Norris, J.R. (1969) Methods in Microbiology Vol. I, 1st edition, Academic Press Inc., London. Parija, S.C. (2007) Textbook of Practical Microbiology, Ahuja Publishing House, New Delhi. Plummer, D.T. (1992) An Introduction to Practical Biochemistry, Tata McGraw Hill

Sharma, K. (2007) Manual of Microbiology Tools and Techniques, Ane's Book

Publisher, New Delhi.

India, New Delhi

MIB-MIN-241: Basic Industrial Microbiology

Hours: 30		Credits:	2
Course	•	To acquaint students with basic concepts of industrial microbiology.	
objectives	•	To understand the process parameters and types of fermentation	
	•	To infer the upstream and downstream processes in fermentation	
	•	To make the students know about effluent treatments	
Course	Aí	fter completion of this course, students will be able to	
outcomes	•	Understand the process of screening important microbes and de fermentation media.	signing
	•	Comprehend the basic fermenter design and overall fermentation process.	
	•	Be acquainted with diverse downstream processing after the fermentation pr	ocess
	•	Apply appropriate approach for effluent management.	
Unit		TopicParticular	Hours
	Ba	asics of fermentation technology and upstream processing	
	•	Characteristics of industrial strains	
	•	Screening of industrially essential microorganisms: Primary and Secondary screening examples: vitamin, antibiotic producers	
	•	Concept of strain improvement	
	•	Microbial culture:	
Unit I		 Culture collection centres and their role: National (NCIM) International (ATCC) Preservation of microorganisms: Soil culture, Oil overlay, Liquid nitrogen freezing, Lyophilization Working and stock culture 	8
	•	Inoculum: characteristics, acclimatization, Inoculum development	
	•	Fermentation media:	
	•	Basic composition	
		 Criteria for selection and screening of media Types of media: synthetic, complex and natural Major raw materials: Carbohydrates, oils & fats, Corn steep Liquor, Soy meals, Molasses, Sulphite liquors, Minor ingredients: growth factors, precursors, buffers, water, antifoam agent Sterilization: batch, continuous 	
	Fe	ermentation equipment and process	
Unit II	•	 Fermenter: Criteria for fermenter design Structure of a Typical Fermenter and its parts: Impeller, baffles, sparger, stuffing box, tc Measurement and control of fermentation parameters: pH, temperature, dissolved oxygen, foaming and aeration Fermentation process: 	7
		o Submerged: Batch, Continuous, Fed-batch, continuous	

-		
	 Solid state fermentation: concept, characteristics and applications 	
	 Anaerobic versus aerobic fermentation 	
	 Immobilized cell/enzyme bioreactor 	
	 Example of Fermentation: Alcohol production 	
	Downstream processing	
	Recovery of fermentation products	
	 Criteria for choice of recovery process 	
	 Cell removal for recovery of product: 	
	 Precipitation 	
	o Filtration: Theory of filtration, Filter aid, Batch Filter (e.g.	
	Plate & Frame filter), Continuous Filter (e.g. Rotary vacuum	
Unit III	filter)	
	 Centrifugation: Theory, Basket, Tubular bowl, Multi-chamber 	8
	 Cell aggregation and flocculation 	
	 Cell disruption: Mechanical, Physical and Chemical methods 	
	 Liquid-Liquid extraction: Co-current and Counter current extraction, 	
	Distillation: Batch and Continuous	
	Purification of fermentation products:	
	o Chromatography: Ion exchange, Adsorption, Affinity chromatography	
	 Membrane process: Ultrafiltration, Reverse Osmosis, 	
	Effluent treatment	
	Disposal of effluent:	
	 Sea and rivers, lagoons, spray irrigation, well disposal and landfilling 	
	• Treatment Processes:	
	Physical Treatment	
	Chemical Treatment	_
Unit IV	Biological Treatment:	7
	o Aerobic processes: Trickling Filters, Biologically Aerated Filters	
	(BAFS), Towers, Fluidized-Bed Systems	
	o Anaerobic processes: Anaerobic Digestion, Anaerobic Digesters,	
	Anaerobic Filters, Up-Flow Anaerobic Sludge Blankets (UASB)	
	By-products of distilleries and breweries	
1		

References

- Casida, L.E (1998) Industrial Microbiology New Age International Publishers, New Delhi
- Crueger, W. and Crueger, A. (2000) Biotechnology: A Textbook of Industrial Microbiology, PanimaPubl Co., New Delhi
- Stanbury, P.F., Whitaker, A. and Halt G. (1995) Principles of Fermentation Technology, Pergamon Press, New York.
- Whitaker, A. and Stanbury, P.F. (1995) Principles of Fermentation Technology, Butterworth-Heinemann
- Patel A. H. (1996); Industrial Microbiology McMillan Publication, New Delhi.
- Prescott S.C and Dunn C.G. (1983) Industrial Microbiology, McGraw Hill Book Co. Inc., New York.
- Tortora, Funke and Case (2010) Microbiology, Brenjamin Cummings Inc., California
- Stainer, R.Y., Ingraham, J.L., Wheelis M.L., Painter R.K. (1995) General Microbiology, MacMillan Press Ltd., London.
- Singh B. D. (2008) Biotechnology: exploring horizons, Kalyani publishers, Ludhiana
- Modi H.A., (2009), 'Fermentation Technology', Vol.1 & 2, Pointer publications, India

MIB-MIN-242: Practicals on Industrial Microbiology and Immunology

Hours: 60 Credits: 2 To study screening methods for industrially important microbes Course objectives To understand the recovery and analysis of fermented products To study the immune techniques and diagnostic microbiology Course After completion of this course, students will be able to Understand the basics of screening of microbes for industry outcomes Recover and anlyze the fermentation product Detect blood groups and perform cross-matching. Infer the diagnostic/immune techniques in medical microbiology 1 Screening of antibiotic-producing microbes by Crowded plate technique 4 and 2 Screening of organic acid-producing microbes using the indicator dye 4 method. 3 Estimation of acetic acid from vinegar by titrimetric method. 4 4 Determination of alcohol concentration in given fermented broth 4 5 Recovery of organic acid from fermentation broth 4 6 Detection of organic acid using Paper chromatography / Thin Layer 4 chromatography Cultivation of fungi using solid-state fermentation (Plate method) 4 Determination of ABO and Rh blood group 8 4 9 Study of cross-matching of blood for transfusion. 4 10 Total WBC count using haemocytometer from whole blood 4 Study of double diffusion technique by Ouchterlony 4 11 12 Dot enzyme-linked immunosorbent assay (Dot ELISA). 4 13 Demonstration of cell immobilization 4 14 Demonstration of a typical fermenter 4 15 Field visit / industrial visit to effluent treatment plant 4 Aneja, K.R. (1996) Experiments in Microbiology, 3rd edition, WishwaPrakashan, References New Delhi. Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New York. Dubey, R.C. and Maheshwari D.K. (2004) Practical Microbiology, S. Chand and Co., New Delhi. Harley, J.P. and Prescott, L.M. (1996) Laboratory Exercise in Microbiology, 3rd ed., WCB/McGraw Hill Publ. Co., London Jayaraman, I (1981) Laboratory Manual in Biochemistry, Wiley Eastern Ltd., New Delhi. Norris, J.R. (1969) Methods in Microbiology Vol. I, 1st edition, Academic Press Inc., London. Parija, S.C. (2007) Textbook of Practical Microbiology, Ahuja Publishing House, New Delhi. Plummer, D.T. (1992) An Introduction to Practical Biochemistry, Tata McGraw Hill Publisher, New Delhi. Sharma, K. (2007) Manual of Microbiology Tools and Techniques, Ane's Book India, New Delhi.

MIB-OE-241: Sustainable agriculture with microbes

Hours: 30 Credits: 2

Course	To acquaint the students with concepts of soil health	
objective		
S	To study methods and agents for bio-control	
	To understand the role of rDNA technology in agriculture	
Course	After completion of this course, students will be able to	
outcomes	•	
outcomes	1	
	Prepare biofertilizers The big and the analysis of the analysis of the second state of the second st	
	Use biocontrol agents in the agricultural field	
	Apply knowledge of rDNA technology in agriculture	
Unit	TopicParticular	Hours
	Concepts in Soil Health	
	Nature and composition of soil	
	Life in the soil	
Unit I	Functions of microbes in soil	8
	• Soil health:	· ·
	Characteristics of a healthy soil	
	Common soil constraints	
	Improvement of soil health	
	Biofertilizers	
	 Types of biofertilizers: N₂-fixing bacteria 	
	 N₂-fixing bacteria Phosphorus solubilizing microorganisms (PSM) 	
	Phosphorus mobilizers	
Unit II	Zinc and Silicate solubilizers	7
	Plant growth-promotingrhizobacteria (PGPR)	
	 Fungi as biofertilizers: Mycorrhiza 	
	Importance of Biofertilizers	
	• Quality Control of Biofertilizers: e.g. <i>Rhizobium</i>	
	Biocontrol agents	
	Concept of bio-control agent	
Unit III	Need and merits of Biological Control	8
	Basic mode of Action of Biocontrol agents	
	Examples and applications of biocontrol agents	
	rDNA technology in agriculture	
T • • • • •	Principle of Recombinant DNA Technology Principle of Recombinant DNA Technology Principle of Recombinant DNA Technology	-
Unit IV	Basic tools of recombination DNA technology: Restriction Enzymes, Vectors bests Gone Cloning and transfer	7
	Vectors, hosts, Gene Cloning and transfer	
	Applications in agriculture	

References

- Dubey, R. C. and Maheshwari D. K. (2006), A textbook of microbiology, S Chand, New Delhi
- Das, H. K. (2005), Textbook of biotechnology, Wiley Dream tech India Pvt. Ltd
- Salle, A. J., (1990), Fundamentals of Microbiology, Tata McGraw Hill, New Delhi.
- Satyanarayana, U. (2005), Biotechnology, Books and Allied (P) Ltd. Kolkata.
- Maier R.M., pepper, I.L. and Gerba, C.P. (2009) Environmental Microbiology, 2nd ed., Academic Press, NY.
- SubbaRao, N.S. (1999) Soil Microbiology, 4th edn., Oxford and IBH Publ. Co., New Delhi.
- Coyne, M.S. (2001) Soil Microbiology: An Exploratory Approach, Delmar Thomson Learning.
- Alexander, M. (1977) Introduction to Soil Microbiology, John Wiley and Sons Inc. New York.
- Bums, R.G. and Slater, J.H. (1982) Experimental Microbial Ecology, Blackwell Scientific Publ., Oxford.
- Atlas, R.M. and Bartha, R. (2000) Microbial Ecology, 4th ed., Benjamin/Cumming Science Publ., USA

MIB-OE-242: Practical on sustainable agriculture Hours: 60 Credits: 2

Course	To study the physio-chemical properties of soil		
objectives	To screen the various biofertilizers from soil		
	To produce and screen the selective biofertilizer		
	To study the effect of biocontrol agents		
	To know the market status of biofertilizers in the district region		
Course	After completion of this course, students will be able to		
outcomes	Analyze the various properties of soil		
	Screen the various biofertilizers		
1	Produce the biofertilizer and check its efficacy State of the biofertilizer and check its efficacy	4	
	Study of physicochemical properties of agricultural soil		
2	Determination of soil microflora using the pour plate technique	4	
3	Screening of nitrogen-fixing bacteria from agricultural soil	4	
4	Screening of phosphate solubilizing bacteria from agricultural soil	4	
5	Screening of siderophores-producing microbes from agricultural soil	4	
6	Isolation of Blue Green Algae (BGA)	4	
7	Isolation of <i>Azospirrillum</i> from plant roots.	4	
8	Production of liquid biofertilizer: Azotobacter/Rhizobium/Trichoderma	4	
9	Study of the effect of biofertilizer on germination index	4	
10	Determination of efficacy of biofertilizer by pot assay	4	
11	Isolation and identification of <i>Trichoderma viride</i> as an effective biocontrol agent	4	
12	Study of antifungal biocontrol agent using agar well method	4	
13	Isolation of cellulose-degrading bacteria from soil sample	4	
14	Demonstration of mushroom cultivation	4	
15	Case study: Market status of biofertilizers in Jalgaon district	4	
References	Aneja, K.R. (1996) Experiments in Microbiology, 3rd edition, WishwaPra New Delhi.	akashan,	
	Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, New York.		
	 Dubey, R.C. and Maheshwari D.K. (2004) Practical Microbiology, S. Ch Co., New Delhi. 	and and	
	 Harley, J.P. and Prescott, L.M. (1996) Laboratory Exercise in Microbiology, 3r ed., WCB/McGraw Hill Publ. Co., London 		
	Norris, J.R. (1969) Methods in Microbiology Vol. I, 1st edition, Academic Press Inc., London.		
	• Parija, S.C. (2007) Textbook of Practical Microbiology, Ahuja Publishing House, New Delhi.		
	Sharma, K. (2007) Manual of Microbiology Tools and Techniques, Ane India, New Delhi.	's Book	

MIB-FP-241: Field Project

Hours: 60 Credits: 2 Preamble

In alignment with the National Education Policy (NEP) 2020, Moolji Jaitha College (Autonomous), Jalgaon is introducing the Field Project at the undergraduate level. The NEP 2020 emphasizes holistic development, inclusivity, and integrating vocational education with academic learning, aiming to nurture socially responsible individuals. This course fosters a strong connection between education and real-world applications. These initiatives aim to bridge the gap between theoretical knowledge and practical experience, helping students develop critical thinking, problem-solving skills, and a sense of civic responsibility.

Objectives

- To provide students with practical exposure in rural and urban socioeconomic context.
- To develop students abilities to apply subject knowledge to address real world problems
- To foster critical thinking and innovative approaches to solve socioeconomic issues.

Outcomes

After completing this course, students will be able to

- Participate actively in filed projects that benefit local communities and promote sustainable development practices.
- Analyse the socio economic data using appropriate methods showcasing improved problem-solving skills, technical proficiency.
- Demonstrate the ability to apply theoretical knowledge to real-world situations effectively and exhibit communication skills.

Course structure

The course is divided in to four probable phases

I] Orientation and preparation

- Introduce to the course, objectives and expectation
- Overview of socioeconomic development issues in rural and urban context
- Training on working methodology and data collection techniques
- Review existing literature related to topic to understand the background and context.

II] Work plan and Field visit

- Visit the potential sites to get a sense of the environment and logistical requirements.
- Create a detailed project plan outlining the steps, timeline, resources needed, and roles of team members.
- Obtain necessary approvals (Ethical/ local authorities/organizations/communities)
- Gather materials and resources (recording devices, cameras, notebooks and supplies)
- Conduct Preliminary Survey, choose appropriate methods for data collection and analysis (e.g., surveys, interviews, observations).

III] Data collection and analysis

- Pilot test to identify issues with data collection.
- Collect data systematically, ensuring consistency and accuracy.
- Keep detailed records of all data (field notes, recordings, photographs etc)
- Organize and analyse the data (manual/ software)

IV] Interpretation and Reporting

- Interpret your findings in the context to objectives.
- Write and submit a comprehensive report detailing your methodology, findings, analysis, and conclusions. (Include visuals charts, graphs, and photographs).
- Prepare a presentation to share findings with peers/ instructors/ community.

Assessment

- Field work participation, field note book, team work etc. (10 Marks)
- Data Collection and Analysis (15 Marks)
- Field project report (15 Marks)
- Presentation of Findings (10 Marks)