K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे
मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी -'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date: 25/04/2025

NOTIFICATION

Sub: - CBCS Syllabi of B. Sc. in Mathematics (Sem. V & VI)

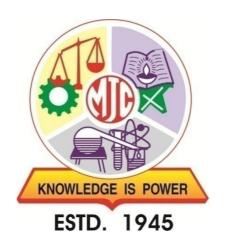
Ref. :- Decision of the Academic Council at its meeting held on 22/04/2025.

The Syllabi of B. Sc. in Mathematics (Fifth and Sixth Semesters) as per **NATIONAL EDUCATION POLICY – 2020 (2023 Pattern)** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2025-26.

Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies

To:


- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

Khandesh College Education Society's

Moolji Jaitha College, Jalgaon

An "Autonomous College"

Affiliated to
Kavayitri Bahinabai Chaudhari
North Maharashtra University, Jalgaon-425001

STRUCTURE AND SYLLABUS

B.Sc. Honours/Honours with Research (T.Y. B.Sc. Mathematics)

Under Choice Based Credit System (CBCS) and as per NEP-2020 Guidelines

[w.e.f. Academic Year: 2025-26]

Preface

The Moolji Jaitha College (Autonomous) has adopted a department-specific model as per the guidelines of UGC, NEP-2020 and the Government of Maharashtra. The Board of Studies in Mathematics of the college has prepared the syllabus for the third-year graduate of Mathematics. The syllabus cultivates theoretical knowledge and applications of different fields of Mathematics. The contents of the syllabus have been prepared to accommodate the fundamental aspects of various disciplines of Mathematics and to build the foundation for various applied sectors of Mathematics. The program will be enlightened the students with the advanced knowledge of Mathematics, which will help to enhance student's employability.

The overall curriculum of three/four year covers pure mathematics, applied mathematics and computational mathematics with programming. The syllabus is structured to cater the knowledge and skills required in the research field, Industrial Sector and Entrepreneurship etc.. The detailed syllabus of each paper is appended with a list of suggested readings.

Hence, Board of Studies in Mathematics in its meeting held on 22/03/2025 resolved to accept the revised syllabus for T. Y. B. Sc. (Mathematics) based on Choice Based Credit System (CBCS) of UGC, NEP-2020 and the Government of Maharashtra guidelines.

Program Outcomes (PO) for B.Sc. Program:

Program outcomes associated with a B.Sc. degree are as follows:

PO No.	PO
1	Graduates should have a comprehensive knowledge and understanding of the fundamental
	principles, theories and concepts in their chosen field of study.
2	Graduates should possess the necessary technical skills and competencies related to their
	discipline, including laboratory techniques and data analysis.
3	Graduates should be able to identify, analyze and solve complex problems using logical
	and critical thinking skills. They should be able to apply scientific methods and principles
	to investigate and find solutions of problem.
4	Graduates should be proficient in effectively communicating scientific information, both
	orally and in writing.
5	Graduates should have a basic foundation in research methods and be capable of
	designing and conducting scientific investigations.
6	Graduates should be able to work effectively as part of a team, demonstrating the ability
	to collaborate with others, respect diverse perspectives and contribute to group projects.
7	Graduates should recognize the importance of ongoing learning and professional
	development. They should be equipped with the skills and motivation to engage in
	continuous learning, adapt to new technologies and advancements in their field and stay
	updated with current research.

Programme Specific Outcome (PSO) for B.Sc. (Mathematics) Honours/Honours with Research:

After completion of this program, students are expected to learn/understand the:

PSO No.	PSO
1	Demonstrate the concepts involved in Real Analysis, Matrix Theory, Differential Equations,
	Algebra, Number Theory and Applied Mathematics.
2	Gain proficiency in mathematical techniques of both pure and applied mathematics and will
	be able to apply necessary mathematical methods to a scientific problem.
3	Acquire significant knowledge on various aspects related to Linear Algebra, Metric Spaces,

	Lattice Theory, Integral Transforms, Optimization Techniques and Partial Differential
	Equations.
4	Learn to work independently as well as a team to formulate appropriate mathematical
	methods.
5	Develope the ability to understand and use the morality and ethics related to scientific
	research.
6	Realize the scope of Mathematics and plan to continue their education as a Post-Graduate
	student of Mathematics and contribute to Mathematics through their research as a researcher.

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree depending upon the number of credits secured;

Levels	Qualification Title	Credit Requ	irements	Semester	Year
		Minimum	Maximum		
4.5	UG Certificate	40	44	2	1
5.0	UG Diploma	80	88	4	2
5.5	Three Year Bachelor's Degree	120	132	6	3
6.0	Bachelor's Degree- Honours	160	176	8	4
	Or				
	Bachelor's Degree- Honours with Research				

Credit distribution structure for Three/ Four year Honors/ Honors with Research Degree Programme with Multiple Entry and Exit

F.Y. B.Sc.

el)		(M-1)	(M-2)	Subject-III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT, RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	I	DSC-1(2T) DSC-2(2P)	DSC-1(2T) DSC-2(2P)	DSC-1(2T) DSC-2(2P)	OE-1(2T)		AEC-1(2T) (Eng) VEC-1(2T) (ES) IKS(2T)	CC-1(2T)	22	UG
(4.5)	П	DSC-3(2T) DSC-4(2P)	DSC-3(2T) DSC-4(2P)	DSC-3(2T) DSC-4(2P)	OE-2(2T) OE-3(2P)		AEC-2(2T) (Eng) VEC-2(2T) (CI)	CC-2(2T)	22	Certificate
	Cum. Cr.	8	8	8	6		10 NSOF course/ Intern	4	44	

S.Y. B.Sc.

Year (Level)	Sem	Subject-I (M-1) Major*		Subject-II (M-2) Minor #	Subject- III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
		Mandatory (DSC)	Elective (DSE)	(MIN)							
	III	DSC-5(2T) DSC-6(2T) DSC-7(2P)		MIN-1(2T) MIN-2(2T) MIN-3(2P)		OE-4(2T)	SEC-1(2T)	AEC-3(2T) (MIL)	CC-3(2T) CEP(2)	22	HC.
2 (5.0)	IV	DSC-8(2T) DSC-9(2T) DSC-10(2P)		MIN-4(2T) MIN-5(2P)		OE-5(2T)	SEC-2(2T) SEC-3(2P)	AEC-4(2T) (MIL)	CC-4(2T) ⑤ FP(2)	22	UG Diploma
	Cum . Cr.	12		10		4	6	4 edits core NSOF co	8	44	

^{*} Student must choose one subject as a Major subject out of M-1, M-2 and M-3 that he/she has chosen at First year

Student must choose one subject as a Minor subject out of M-1, M-2 and M-3 that he/she has chosen at First year (Minor must be other than Major)

© OJT/Internship/CEP should be completed in the summer vacation after 4th semester

T.Y. B.Sc.

Year (Level)	Sem	Subjo (M- Ma	-1)	Subject- II (M-2) Minor	Subject- III (M-3)	Open Elective (OE)	VSC, SEC (VSEC)	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
		Mandatory (DSC)	Elective (DSE)	(MIN)							
	v	DSC-11(2T) DSC-12(2T) DSC-13(2T) DSC-14(2P) DSC-15(2P)	DSE-1A/B (2T) DSE-2A/B (2P)				VSC-1(2T) VSC-2(2P)		OJT/Int (4)	22	
3 (5.5)	VI	DSC-16(2T) DSC-17(2T) DSC-18(2T) DSC-19(2T) DSC-20(2T) IKS DSC-21(2P) DSC-22(2P)	DSE-3A/B (2T) DSE-4A/B (2P)				VSC-3(2T) VSC-4(2P)			22	UG Degree
	Cum . Cr.	24	8				8		4	44	
-		•	Exi	t option: Awar	d of UG Degr	ee in Major v	vith 132 credits	OR Continue	with Major and Minor		

Fourth Year B.Sc. (Honours)

Year (Level)	Sem	Major Core Subjects		Major Core Subjects		Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-23(4T) DSC-24(4T) DSC-25(4T) DSC-26(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)					22	UG		
IV (6.0)	VIII	DSC-27(4T) DSC-28(4T) DSC-29(4T) DSC-30(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					OJT/Int (4)	22	Honours Degree		
	Cum. Cr.	28	8	4				4	44			
	Four Year UG Honors Degree in Major and Minor with 176 credits											

Fourth Year B.Sc. (Honours with Research)

Year (Level)	Sem	Major Core Subjects		Research Methodology (RM)	VSC, SEC (VSEC)	OE	AEC, VEC, IKS	CC, FP, CEP, OJT/Int/RP	Cumulative Credits/Sem	Degree/ Cumulative Credit
	VII	DSC-23(4T) DSC-24(4T) DSC-26(2P)	DSE-5A/B (2T) DSE-6A/B (2P)	RM(4T)				RP(4)	22	UG
IV (6.0)	VIII	DSC-27(4T) DSC-28(4T) DSC-30(2P)	DSE-7A/B (2T) DSE-8A/B (2P)					RP(8)	22	Honours with Research Degree
	Cum. Cr.	20	8	4				12	44	

Sem- Semester, DSC- Department Specific Course, DSE- Department Specific Elective, OE/GE- Open/Generic elective, VSC- Vocational Skill Course, SEC- Skill Enhancement Course, VSEC- Vocation and Skill Enhancement Course, AEC- Ability Enhancement Course, IKS- Indian Knowledge System, VEC- Value Education Course, T- Theory, P- Practical, CC-Co-curricular RM- Research Methodology, OJT- On Job Training, FP- Field Project, Int-Internship, RP- Research Project, CEP- Community Extension Programme, ENG- English, CI- Constitution of India, MIL- Modern Indian Laguage

- Number in bracket indicate credit
- The courses which do not have practical 'P' will be treated as theory 'T'
- If student select subject other than faculty in the subjects M-1, M-2 and M-3, then that subject will be treated as Minor subject, and cannot be selected as Major at second year.

Details of T.Y. B.Sc. (Mathematics)

Course	Course	Course Code	Course Title	Credits		hing Wee	Hours/ k		Ma	rks	
	Type	Course Code		Credits	T	P	Total	Inter	rnal		ernal
								T	P	T	P
			Semester V, Level –	5.5							
DSC-11	DSC	MTH-DSC-351	Methods of Real Analysis	2	2		2	20		30	
DSC-12	DSC	MTH-DSC-352	Modern Algebra	2	2		2	20		30	
DSC-13	DSC	MTH-DSC-353	Integral Calculus	2	2		2	20		30	
DSC-14	DSC	MTH-DSC-354	Practical on MTH-DSC-351	2		4	4		20		30
DSC-15	DSC	MTH-DSC-355	Practical on MTH-DSC-352	2		4	4		20		30
DSE-1A	DSE	MTH-DSE-351A	Number Theory	2	2		2	20		30	
DSE-1B	DSE	MTH-DSE-351B	Lattice Theory	2	2		2	20		30	
DSE-2A	DSE	MTH-DSE-352A	Practical on MTH-DSE-351A	2		4	4		20		30
DSE-2B	DSE	MTH-DSE-352B	Practical on MTH-DSE-351B	2		4	4		20		30
VSC-1	VSC	MTH-VSC-351	Programming in Python	2	2		2	20		30	
VSC-2	VSC	MTH-VSC-352	Practical on MTH-VSC-351	2		4	4		20		30
OJT/Int	OJT	MTH-OJT-351	On Job Training/Internship	4		8	8		40		60
			Semester VI, Level –	- 5.5							
DSC-16	DSC	MTH-DSC-361	Dynamical Systems	2	2		2	20		30	
DSC-17	DSC	MTH-DSC-362	Linear Algebra	2	2		2	20		30	
DSC-18	DSC	MTH-DSC-363	Metric Spaces	2	2		2	20		30	
DSC-19	DSC	MTH-DSC-364	Laplace Transforms	2	2		2	20		30	
DSC-20	DSC/IKS	MTH-DSC-365	Ancient Indian Mathematics	2	2		2	20		30	
DSC-21	DSC	MTH-DSC-366	Practical on MTH-DSC-361	2		4	4		20		30
DSC-22	DSC	MTH-DSC-367	Practical on MTH-DSC-362	2		4	4		20		30
DSE-3A	DSE	MTH-DSE-361A	Partial Differential Equations	2	2		2	20		30	
DSE-3B	DSE	MTH-DSE-361B	Computational Mathematics	2	2		2	20		30	
			with SageMath								
DSE-4A	DSE	MTH-DSE-362A	Practical on MTH-DSE-361A	2		4	4		20		30
DSE-4B	DSE	MTH-DSE-362B	Practical on MTH-DSE-361B	2		4	4		20		30
VSC-3	VSC	MTH-VSC-361	Optimization Techniques	2	2		2	20		30	
VSC-4	VSC	MTH-VSC-362	Practical on MTH-VSC-361	2		4	4		20		30

Examination Pattern

Theory Question Paper Pattern:

- 30 (External) +20 (Internal) for 2 credits
 - o External examination will be of 1½ hours duration
 - There shall be 3 questions: Q1 carrying 6 marks and Q2, Q3 carrying 12 marks each. The tentative pattern of question papers shall be as follows;
 - o Q1: Attempt any 2 out of 3 sub-questions; each 3 marks.
 - o Q 2 and Q3: Attempt any 3 out of 4 sub-question; each 4 marks.

Rules of Continuous Internal Evaluation:

The Continuous Internal Evaluation for theory papers shall consist of two methods:

1. Continuous & Comprehensive Evaluation (CCE): CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:

- i. Individual Assignments
- ii. Seminars/Classroom Presentations/Quizzes
- iii. Group Discussions/Class Discussion/Group Assignments
- iv. Case studies/Case lets
- v. Participatory & Industry-Integrated Learning/Field visits
- vi. Practical activities/Problem Solving Exercises
- vii. Participation in Seminars/Academic Events/Symposia, etc.
- viii. Mini Projects/Capstone Projects
- ix. Book review/Article review/Article preparation
- x. Any other academic activity
- xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that three units of the syllabus are mapped to the CCEs.
- **2. Internal Assessment Tests (IAT):** IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher is at liberty to decide which units are to be assessed using CCEs and which unit is to be assessed on the basis of IAT. The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations. The subject teachers are required to communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Practical Examination Credit 2: Pattern (30+20)

External Practical Examination (30 marks):

- Practical examination shall be conducted by the respective department at the end of the semester.
- Practical examination will be of 3 hours duration and shall be conducted as per schedule.
- Practical examination shall be conducted for 2 consecutive days for 2 hr/ day where incubation conditionis required.
- There shall be 05 marks for journal and viva-voce. Certified journal is compulsory to appear for practical examination.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by department as per schedule given.
- For internal practical examination student must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and the Head of the department.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities assigned by the faculty during regular practicals. For details refer internal theory examination guidelines.
- Finally 40 (10+30) marks performance of student will be converted into 20 marks.

SEMESTER-V

T.Y. B.Sc. Mathematics (Major) Semester-V MTH-DSC-351: Methods of Real Analysis

Total l	Hours: 30 Credits: 2	
Course	 To study sequences of real numbers and sequences of functions. 	
Objectives	To study the series of real numbers.	
	To study the series of functions.	
	■ To study the concept of Fourier series.	
Course	After successful completion of this course, students are expected to:	
Outcomes	 Decide, whether a given series is convergent or divergent. 	
	 Use different tests for absolute convergence. 	
	 Understand the concept of pointwise convergent, uniform convergent, integrati 	on and
	differentiation of series of functions.	
	 Understand Fourier series and half range Fourier series. 	
Unit	Contents	Hours
	Sequences of real numbers and sequences of functions	
	 Definition of a sequence and a subsequence of real numbers. 	
	 Convergence and divergence of sequences of real numbers 	
Unit I	 Bounded sequences and Monotone sequences of real numbers 	7
	 Point wise convergence and Uniform convergence of sequences of functions 	
	 Cauchy's criteria for uniform convergence of a sequence of functions 	
	■ Consequences of uniform convergence	
	Series of real numbers	
	Convergence and divergence	
	 Series with non-negative terms 	
TI\$4 TT	 Alternating Series 	0
Unit II	 Conditional convergence and absolute convergence 	8
	 Rearrangement of series 	
	■ Tests for absolute convergence	
	Series whose terms form non-increasing sequence	
	Series of functions	
Unit III	 Pointwise convergence of a series of functions 	7
	 Uniform convergence of a series of functions 	
	 Integration and differentiation of a series of functions 	
	Fourier series in the range $[-\pi,\pi]$	
	 Fourier series and Fourier coefficients 	
Unit IV	 Dirichlet's condition of convergence (statement only) 	8
	Fourier series for even and odd functions	
	■ Sine and Cosine Series in half range	
Study	R.R. Goldberg, <i>Methods of Real Analysis</i> , Oxford and IBH Publishing Co.Pvt.	
Resources	Ltd., 2nd Edition, 1976.	
	(Unit 1:- 2.1, 2.3, 2.4, 2.5, 2.6, 9.1, 9.2, 9.3, Unit 2:- 3.1, 3.2, 3.3, 3.4, 3.5,	
	3.6, 3.7, Unit 3:- 9.4, 9.5, 9.6)	
	• M. R. Spigel, <i>Laplace Transform and Fourier series</i> , Schaum series, Mc.	
	Graw Hill, 1965. (Unit 4)	
	S. C. Malik and Savita Arora, <i>Mathematical Analysis</i> , iv the edition New Age	
	International Pvt. Ltd., New Delhi, 2010.	<u> </u>

T.Y. B.Sc. Mathematics (Major) Semester-V MTH-DSC-352: Modern Algebra

Total Hours: 30 Credits: 2

	lours: 30 Credits: 2	
Course	 To gain the knowledge of basic concepts related to a group such as normal sub 	groups
Objectives	and quotient groups.	
	 To study the concepts of commutator subgroups and isomorphism of groups 	
	To understand basic concepts related to a ring such as an ideal, isomorphism o	f rings.
	To study the concepts of polynomial rings.	Č
Course	After successful completion of this course, students are expected to:	
Outcomes	 Know normal subgroups, simple groups and quotient groups. 	
	 Know commutator subgroups, homomorphism, isomorphism of groups and Ca 	avlev's
	theorem.	iyicy s
	 Know ideals in rings, quotient rings and isomorphism of rings. 	
	 Know polynomial rings and irreducibility of polynomials. 	
TT *4		TT
Unit	Contents	Hours
	Normal subgroups and Quotient groups	
	Normal Subgroup	
Unit I	 Criterions for a subgroup to be a normal subgroup 	7
	 Union and Intersection of normal subgroup 	
	Quotient Group, Simple Group	
	Commutator subgroups and isomorphism of groups	
	Commutator subgroup	
Unit II	Revision of Homomorphism and Isomorphism of Groups	8
Omt II	 Isomorphism theorems for groups and examples 	O
	• Cayley's theorem, Theorem: $o(A_n) = \frac{o(S_n)}{2}$	
	Ideals, quotient rings and isomorphism of rings	
	 Ring, integral domain, field and basic properties 	
Unit III	Characteristics of a ring	7
	• Subrings, ideals, left ideals, right ideals, principal ideals, prime and maximal	,
	ideals.	
	 Quotient rings, Homomorphism and isomorphism of rings 	
	Polynomial rings	
	Polynomial rings and its properties	
T1 *4 TT7	Roots of Polynomials	
Unit IV	Factorization of Polynomials	8
	 Division Algorithm for Polynomials 	
	Eisenstein's Criterion	
Study	N. S. Gopalakrishnan, <i>University Algebra</i> (2 nd Revised Edition), New Age	
Resources	International Publishers, 2003.	
2100011100		
	Chapter-1: Art1.7, 1.8, 1.9; Chapter-2 : Art 2.2, 2.3,2.4,2.5, 2.6, 2.7, 2.8,	
	2.9,2.14,2.15 - I. B. Fraleich, A Finat Course in Abstract Aleebra (2 rd Edition), Nonese	
	J. B. Fraleigh, A First Course in Abstract Algebra (3 rd Edition), Narosa	
	Publishing House, (Tenth Reprint 2003).	
	Chapter-30: Art30.1, 30.2, 30.3; Chapter-31: Art31.1, 31.2.	
	N. Herstein, <i>Topics in Algebra</i> (2nd Edition), Vikas Publishing House Pvt.	
	Ltd. New Delhi, 1964.	
	• V. K. Khanna and S. K. Bhambri, <i>A course in Abstract Algebra</i> (3rd Edition),	
	Vikas Publishing House Pvt. Ltd. New Delhi, 2008.	

T.Y. B.Sc. Mathematics (Major) Semester-V MTH-DSC-353: Integral Calculus

Total Hours: 30 Credits: 2

Iotai i	10urs: 30 Credits: 2	
Course	 To study Riemann Integration and its properties. 	
Objectives	To study Mean value theorems of integral calculus.	
, and the second	To study Improper integrals with finite limit and infinite limit.	
	To study Beta and Gamma Integrals.	
Course	· · · · · · · · · · · · · · · · · · ·	
	After successful completion of this course, students are expected to:	
Outcomes	 Understand the concept of Riemann Integration. 	
	 Know the mean value theorems of integral calculus. 	
	 Understand Improper integrals with finite limit and infinite limit their properties 	es.
	 Learn the concepts of Beta and Gamma Integrals. 	
Unit	Contents	Hours
	Riemann integration	
	• Definition and Existence of the Integral, The meaning of $\int_a^b f dx$ when $a \le b$,	
	Inequalities for integrals	
	Refinement of partitions	
Unit I	Darboux's Theorem (without proof)	8
	Conditions of integrability	
	 Integrability of the sum and difference of integrable functions 	
	The integral as a limit of sum (Riemann Sums) and the limit of sum as the	
	integral and its applications	
	Mean value theorems of integral calculus	
	The First mean value theorem	_
Unit II	The generalized first mean value theorem	7
	Abel's lemma (without proof)	
	 Second mean value theorem. Bonnets form and Karl Weierstrass form 	
	Improper integrals	
	 Integration of unbounded functions with finite limits of Integral 	
	• Comparison Test for convergence at a of $\int_a^b f dx$	
	- C dx	
Unit III	Convergence of the improper integrals $\int_a^b \frac{dx}{(x-a)^n}$	8
	Cauchy's general test for convergence at the point a of $\int_a^b f dx$	
	Absolute convergence of the improper integrals $\int_a^b f dx$	
	Convergence of the integral with infinite range of Integration	
	■ Comparison Test for convergence at ∞	
	Beta and Gamma integrals	
	 Convergence of Beta and Gamma Integrals 	
TT24 TT7	 Properties of Beta and Gamma Functions 	_
Unit IV	Relation between Beta and Gamma Functions	7
	Duplication Formula	
	 Evaluation of integrals using Beta and Gamma Integrals 	
Study	S. C. Malik and Savita Arora, <i>Mathematical Analysis</i> , second Edition, New	
Resources	Age International Pvt. Ltd., New Delhi, 2000. Chapter 9: 1 to 13, Chapter 11:	
11000011000	1 to 5.	
	R.R. Goldberg, <i>Methods of Real Analysis</i> , Oxford & IBH Publishing Co.	
	PVT. LTD, 2nd Edition, 1976.	
<u> </u>	1 v 1 . L 1D , 2 nd Lanton, 1770.	L

T.Y. B.Sc. Mathematics (Major) Semester-V

MTH-DSC-354: Practical on MTH-DSC-351

Total Hours: 60 Credits: 2 To study sequences of real numbers and sequences of functions. Course **Objectives** To study the series of real numbers. To study the series of functions. To study the concept of Fourier series. Course After successful completion of this course, students are expected to: **Outcomes** Decide, whether a given series is convergent or divergent. Use different tests for absolute convergence. Understand the concept of pointwise convergent, uniform convergent, integration and differentiation of series of functions. Understand Fourier series and half range Fourier series. Sr. No. Contents Hours 1 Convergence of sequence-I 4 2 Convergence of sequence-II 4 3 Pointwise convergence 4 4 Uniform convergence of sequence of function 4 5 Sequence of partial sum 6 Comparision test for series 4 7 4 Ratio test for series 8 Cauchy's condensation test for series 4 Root test for series 9 4 M_n test for convergence 10 4 11 Uniform convergence for series 4 12 4 Introduction to Fourier series Fourier series-I 13 Fourier series-II 14 4 15 Fourier series-III 4

List of Practicals

Practical No: 01 Convergence of sequence-I

- 1) Discuss the convergence of the sequence $\left\{\frac{n+1}{n+2}\right\}$.
- 2) Discuss the convergence of the sequence $\left\{\frac{n^2+2}{n^4+3}\right\}$
- 3) Discuss the convergence of the sequence $\left\{\frac{2n+1}{3n^2+2}\right\}$.
- 4) Discuss the convergence of the sequence $\{\sqrt{n} + 1 \sqrt{n}\}$.
- 5) Discuss the convergence of the sequence \sqrt{n} .

Practical No: 02 Convergence of sequence-II

- 1) Show that the sequence $\left\{\frac{1}{n}\right\}$ converges to 0.
- 2) Show that the sequence $\{1\}$ converges to 1.
- 3) If the sequence of real $\{s_n\}$ converges to L then show that the sequence $\{|s_n|\}$ converges to |L|.

- 4) If the sequence of real $\{|s_n|\}$ converges to 0 then show that the sequence $\{s_n\}$ converges to 0.
- 5) Prove that limit of convergent sequence is unique.

Practical No: 03 Pointwise convergence

- 1) For $n \in I$, let $f_n(x) = nx(1-x^2)^n$ for $0 \le x \le 1$. Show that $\{f_n(x)\}$ converges to 0.
- 2) For $n \in I$, let $f_n(x) = nx(1-x^2)^n$ for $0 \le x \le 1$. Show that $\left\{ \int_0^1 f_n(x) dx \right\}$ converges to $\frac{1}{2}$.
- 3) Let $f_n(x) = \frac{x^n}{1+x^n}$, $0 \le x \le 1$, show that $\{f_n(x)\}$ converges pointwise on [0,1].
- 4) Let $f_n(x) = \frac{\sin nx}{n}$, $0 \le x \le 1$, show that $\{f_n(x)\}$ converges pointwise on [0,1]. 5) Let $f_n(x) = \frac{\cos nx}{n}$, $0 \le x \le 1$, show that $\{f_n(x)\}$ converges pointwise on [0,1].

Practical No: 04 Uniform convergence of sequence of function

- 1) Test the uniform convergence of $f_n(x) = x^n$, $0 \le x \le 1$. 2) Test the uniform convergence of $f_n(x) = \frac{x}{1+nx}$, $0 \le x < \infty$. 3) Test the uniform convergence of $f_n(x) = \frac{nx}{1+n^2x^2}$, $-\infty < x < \infty$.
- 4) Test the uniform convergence of $f_n(x) = \frac{\sin nx}{n}$, $0 \le x \le 1$.
- 5) Test the uniform convergence of $f_n(x) = \frac{\cos nx}{n}$, $0 \le x \le 1$.

Practical No: 05 Sequence of partial sum

- 1) Discuss the convergence of the series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$
- 2) Discuss the convergence of the series $1 + 2 + 3 + 4 + \cdots$
- 3) Discuss the convergence of the series $\sum x^n$.
- 4) Discuss the convergence of the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$.
- 5) Discuss the convergence of the series $2 + 4 + 6 + 8 + \cdots$

Practical No: 06 Comparision test for series

- 1) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$ 2) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{1+n}{1+n^2}$. 3) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n^2+2n+6}{n^3+n^2+4}$.
- 4) Discuss the Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n^2+5}{n^4+4}$
- 5) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{2n^2 + 6n + 3}{n^5 + 6}$

Practical No: 07 Ratio test for series

- 1) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n^4}{n!}$
- 2) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{3}{1+2^n}$.
- 3) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n^n}{n!}$
- 4) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- 5) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{x^n}{n!}$

Practical No: 08 Cauchy's condensation test for series

- 1) Test the convergence of the series by Cauchy's condensation test $\sum_{n=1}^{\infty} \frac{1}{n}$.
- 2) Test the convergence of the series by Cauchy's condensation test $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

- 3) Test the convergence of the series by Cauchy's condensation test $\sum_{n=1}^{\infty} \frac{1}{n \log n}$.
- 4) Test the convergence of the series by Cauchy's condensation test $\sum_{n=1}^{\infty} \frac{1}{n (log n)^2}$.
- 5) Test the convergence of the series by Cauchy's condensation test $\sum_{n=1}^{\infty} \frac{1}{n (log n)^x}$.

Practical No: 09 Root test for series

- 1) For what values of p the series $\frac{1}{1^p} \frac{1}{2^p} + \frac{1}{3^p} \frac{1}{4^p} + \cdots$ converges.
- 2) Test the convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$.
- 3) Test the uniform convergence of $\sum_{n=1}^{\infty} \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n}$.
- 4) Test the uniform convergence of $\sum_{n=1}^{\infty} \frac{(n)^{n^2}}{(n+1)^{n^2}}$.
- 5) Test the convergence of $\sum_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{2n}}{e^n}$.

Practical No:10 M_n test for convergence

- 1) Discuss the uniform convergence of the following series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2} \ x \in \mathbb{R}$.
- 2) Discuss the uniform convergence of the following series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} \ x \in \mathbb{R}$.
- 3) Discuss the uniform convergence of the following series $\sum_{n=1}^{\infty} \frac{1}{n^2 + x^2} x \in [0, \infty)$.
- 4) Show that the series $\sum_{n=1}^{\infty} \frac{nx^2}{n^3 + x^3}$ is uniformly convergent on [0 A] further show that $\lim_{x \to 1} \sum_{n=1}^{\infty} \frac{nx^2}{n^3 + x^3} = \sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$.
- 5) Discuss the uniform convergence of the following series $\sum_{n=1}^{\infty} e^{-nx} x^n$ $0 \le x \le 10$.

Practical No:11 Uniform convergence for series

- 1) Discuss the uniform convergence of the following series $\sum_{n=1}^{\infty} \frac{\sin(x^2 + nx^2)}{n(n+1)}$, $x \in \mathbb{R}$.
- 2) Discuss the uniform convergence of the following series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$, $x \in \mathbb{R}$.
- 3) Discuss the uniform convergence of the following series $\sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$, $x \in \mathbb{R}$.
- 4) If $\sum_{n=1}^{\infty} |a_n| < \infty$ then prove that the series $\sum_{n=1}^{\infty} a_n x^n$ is uniformly convergent for $0 \le x < 1$.
- 5) If $\sum_{n=1}^{\infty} |a_n| < \infty$ then prove that $\int_0^1 \sum_{n=0}^{\infty} a_n x^n \ dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1}$

Practical No:12 Introduction to Fourier series

- 1) Assuming that f(x) can be expanded in $[-\pi, \pi]$ as $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ prove that $\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$.
- 2) Define: i) periodic function, ii) even function, iii) odd function.
- 3) State Fourier series.
- 4) State Fourier series for even function.
- 5) State Fourier series for odd function.

Practical No:13 Fourier series-I

- 1) Find the Fourier series for $(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ x, & 0 \le x \le \pi \end{cases}$.
- 2) Find the Fourier series for $(x) = \begin{cases} -1, & -\pi \le x \le 0 \\ 1, & 0 \le x \le \pi \end{cases}$

- 3) Find the Fourier series for $(x) = \begin{cases} x + \pi, & 0 \le x \le \pi \\ -x + \pi, & -\pi \le x < 0 \end{cases}$.
- 4) Obtained the series of sine of multiple of x in $[0 \pi]$ for f(x) = x.
- 5) Find half range cosine series for f(x) = x, $x \in [0, \pi]$.

Practical No:14 Fourier series-II

- 1) Find the Fourier series for $f(x) = x + x^2$ on $[-\pi, \pi]$.
- 2) Find the Fourier series for f(x) = |x| on $[-\pi, \pi]$.
- 3) Obtained the Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ 4) Find the half range sine series for $f(x) = \begin{cases} \frac{1}{4} x, & 0 < x < \frac{1}{2} \\ x \frac{3}{4}, & \frac{1}{2} < x < 1 \end{cases}$
- 5) Obtained the Fourier series for the function $f(x) = \begin{cases} 1, & -\pi \le x < 0 \\ 0, & 0 \le x < \pi \end{cases}$

Practical No:15 Fourier series-III

- Obtained the Fourier series for the function (x) = {-π, -π < x < 0 x, 0 < x < π }.
 Obtained the Fourier series for the function (x) = {-x + 1, -π < x < 0 x + 1, 0 < x < π }.
 Obtained the Fourier series for the function (x) = {0, -π ≤ x ≤ 0 sin x, 0 ≤ x ≤ π }.
 Obtained the Fourier series for the function (x) = {πx, 0 ≤ x ≤ 1 π(2-x), 1 ≤ x ≤ 2 }.
- 5) Find the Fourier series for $f(x) = x x^2$ on $[-\pi, \pi]$.

T.Y. B.Sc. Mathematics (Major) Semester-V MTH-DSC-355: Practical on MTH-DSC-352

William Doc 2001 Hacker on William Doc 202

Total I	Hours: 60 Credits: 2	
Course Objectives	 To gain the knowledge of basic concepts related to a group such as normal suband quotient groups. To study the concepts of commutator subgroups and isomorphism of groups To understand basic concepts related to a ring such as an ideal, isomorphism or to study the concepts of polynomial rings. 	
Course Outcomes	 After successful completion of this course, students are expected to: Understand and solve problems on normal subgroups and simple group. Explain the concepts and solve the problems on subrings and ideals in rings Apply isomorphism theorems to solve problems on isomorphic groups and ring Understand the concepts of reducible and irreducible polynomials in polynomials 	
Sr. No.	Contents	Hours
1	Normal Subgroups-I	4
2	Normal Subgroups-II	4
3	Quotient Groups	4
4	Groups	4
5	Isomorphism Theorems for Groups-I	
6	Isomorphism Theorems for Groups-II	
7	Isomorphism Theorems for Groups-III	
8	Isomorphism Theorems for Groups-IV	4
9	Subrings 4	
10	Ideals of Ring-I 4	
11	Ideals of Ring-II 4	
12	PID and Characteristic of Ring 4	
13	Fields and Quotient Rings 4	
14	Polynomial Rings	4
15	Reducible and Irreducible Polynomials	4

List of Practicals

Practical No. - 1: Normal Subgroups-I

- 1. Let $G = (\{1, -1, i, -i\}, \times)$, be a group and $H = (\{1, -1\}, \times)$ be a subgroup of G. Show that H is normal in G.
- 2. Prove that every subgroup of an abelian group is normal.
- 3. Prove that every subgroup of a cyclic group is normal.
- 4. Prove that intersection of two normal subgroups of a group G is normal in G.
- 5. Show by an example that union of two normal subgroups of a group G need not be a normal subgroup.

Practical No. - 2: Normal Subgroups-II

- 1. If *H* is a subgroup of a group *G* and $N(H) = \{g \in G : gHg^{-1} = H\}$ then show that N(H) is a subgroup of *G* and *H* is normal in N(H).
- 2. Show that Z(G) is a normal subgroup of a group G.

- 3. Find all normal subgroups of the group of quaternion's $Q = \{\pm 1, \pm i, \pm j, \pm k\}$.
- 4. Give an example of subgroups H, K of G such that H is normal in K and K normal in G but H is not normal in G.
- 5. If $G = (\mathbb{Z}, +)$ and $N = (3\mathbb{Z}, +)$, then find the quotient group $\frac{G}{H}$.

Practical No. - 3: Quotient Groups

- 1. Let $G = (\mathbb{Z}_{12}, +_{12})$ be a group and $H = (\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}, +_{12})$ be a subgroup of G. Show that $\frac{G}{H}$ is a group.
- 2. Prove that the quotient group of an abelian group is abelian.
- 3. Give an example of group G, such that quotient group $\frac{G}{H}$ is abelian group but G is not abelian group.
- 4. Prove that the quotient group of a cyclic group is cyclic.
- 5. Give an example of group G, such that quotient group $\frac{G}{H}$ is cyclic group but G is not cyclic group.

Practical No. - 4: Groups

- 1. Let $G = GL(2, \mathbb{R}) = \{A : A \text{ is non-singular } 2 \times 2 \text{ matrix over } \mathbb{R} \}$, a group under usual matrix multiplication and $H = SL(2, \mathbb{R}) = \{A \in G : |A| = 1\}$ a subgroup of G. Show that H is normal in G.
- 2. Let $G = (\{1, -1, i, -i, j, -j, k, -k\}, \cdot)$ be a group of quaternions and $S = \{i, j\}$. Show that S generates G.
- 3. Let $S = \{(1, 2), (1, 3)\} \subseteq S_3$. Find $\langle S \rangle$.
- 4. If = S_3 , then find G'.
- 5. Show that $(\mathbb{Z}_7, +_7)$ is a simple group.

Practical No. - 5: Isomorphism Theorems for Groups-I

- 1. If $f:(G,*)\to (G_1, \bigcirc)$ is a group homomorphism, then show that $\ker(f)$ is a normal subgroup of G.
- 2. Let $f:(G,*) \to (G_1, \odot)$ be an one-one group homomorphism. Prove that $\ker(f) = \{0\}$.
- 3. Let $f:(G,*) \to (G_1, \odot)$ be a group homomorphism with $\ker(f) = \{0\}$. Prove that f is one-one.
- 4. If $f: G \to G_1$ is an on to group homomorphism, then prove that $\frac{G}{\ker(f)} \cong G_1$.
- 5. Let *H* and *K* be subgroups of a group *G* and *H* be a normal subgroup of *G*. Prove that $\frac{HK}{H} \cong \frac{K}{H \cap K}$

Practical No. - 6: Isomorphism Theorems for Groups-II

- 1. Let H and K be normal subgroups of a group G such that $H \subseteq K$. Prove that $\frac{G}{K} \cong \frac{G/H}{K/H}$.
- 2. Show that A_n is a normal subgroup of S_n , where $n \ge 2$.
- 3. If H is a subgroup of a group S_n $(n \ge 2)$, then show that either all permutations in H are even or exactly half of them are even.
- 4. Show that every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.
- 5. Show that every finite cyclic group of order n is isomorphic to $(\mathbb{Z}_n, +_n)$.

Practical No. - 7: Isomorphism Theorems for Groups-III

- 1. Find how many onto group homomorphisms are there from \mathbb{Z}_{12} to \mathbb{Z}_5 ?
- 2. Let \mathbb{R}^* be the multiplicative group of non-zero reals. Show that $\frac{GL(2,\mathbb{R})}{SL(2,\mathbb{R})} \cong \mathbb{R}^*$.
- 3. Let $G = \{1, -1\}$ be the group under multiplication. Show that the function $f: S_n \to G$ defined by $f(\sigma) = \{1, -1\}$ $\begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}, \text{ is an onto group homomorphism. Find its kernel.}$ 4. Show that \mathbb{Z}_9 is not a homomorphic image of \mathbb{Z}_{16} .
- 5. Show that the group $(\mathbb{Q}, +)$ is not isomorphic to (\mathbb{Q}^+, \cdot) .

Practical No. - 8: Isomorphism Theorems for Groups-IV

- 1. Prove that there are only two (upto isomorphisms) groups of order six.
- 2. Show that every group is isomorphic to permutation group.
- 3. Let G be an abelian group. Show that a map $f: G \to G$ defined by $f(x) = x^{-1}$, for all $x \in G$, is an automorphism.
- 4. Let *G* be an group and a map $f: G \to G$ defined by $f(x) = x^{-1}$, for all $x \in G$, be an automorphism. Show that *G* is abelian.
- 5. Let G be a finite abelian group of order 2k + 1 (k > 0). Show that G is non-trivial homomorphism.

Practical No. - 9: Subrings

- 1. Let R be a ring and $Z(R) = \{x \in R : xy = yx, \forall y \in R\}$. Show that Z(R) is a subring of R.
- 2. Prove that intersection of two subrings of a ring R is again a subring of R.
- 3. Show by an example that union of two subrings of a ring is not a subring.
- 4. Let *R* be a ring and $a \in R$. Show that $S = \{x \in R : xa = 0\}$ is a subring of *R*.
- 5. Prove or disprove: every subring of ring R is an ideal of R.

Practical No. - 10: Ideals of Ring-I

- 1. If I, J are ideals of a ring R, then prove that I + J is an ideal of R.
- 2. Show that $n\mathbb{Z}$ is an ideal of the ring $(\mathbb{Z}, +, \cdot)$ where $n \in \mathbb{N}$.
- 3. Show by an example that union of two ideals of a ring R is not an ideal of R.
- 4. Show that intersection of two prime ideals in a ring need not be a prime ideal.
- 5. Find all prime ideals and maximal ideals in the ring $(\mathbb{Z}_{12}, +_{12}, \times_{12})$.

Practical No. - 11: Ideals of Ring-II

- 1. Prove that p is a prime integer if and only if $p\mathbb{Z}$ is a prime ideal in ring \mathbb{Z} .
- 2. Prove that an ideal I of \mathbb{Z} is a prime ideal if and only if $I = p\mathbb{Z}$ for some prime p or $I = \{0\}$.
- 3. Let $R = C[0,1] = \{f : f \text{ is a continuous real valued function defined on } [0,1] \}$ be a ring under the operations (f+g)(x) = f(x) + g(x) and $(f \cdot g)(x) = f(x)g(x)$ and $(\mathbb{R},+,\cdot)$ be the ring of real under usual addition and multiplication. Show that $\{f \in R : f\left(\frac{1}{2}\right) = 0\}$ is a maximal ideal of R.
- 4. Show that $\{0\}$, R are the only ideals in a field R.
- 5. Let *R* be a finite commutative ring with identity 1 and *I* be an ideal of *R*. Prove that *I* is prime ideal of *R* if and only if *I* is a maximal ideal of *R*.

Practical No. - 12: PID and Characteristics of Ring

- 1. Prove that $\mathbb{Z}[i]$ is an integral domain.
- 2. Show that $(\mathbb{Z}, +, \cdot)$ is a PID.
- 3. Show that characteristics of a Boolean ring is two.
- 4. Find the characteristics for the rings i) $(\mathbb{Z}_n, +_n, \times_n)$ ii) $(\mathbb{Z}, +, \cdot)$.
- 5. Prove that characteristic of an integral domain is either 0 or a prime number.

Practical No. - 13: Fields and Quotient Rings

- 1. If $f: R \to R'$ is an onto ring homomorphism, then R' is isomorphic to some quotient ring of R.
- 2. Let R be a division ring and $Z(R) = \{x \in R : xy = yx \ \forall y \in R\}$. Show that Z(R) is a field.
- 3. Show that $\mathbb{Z}_n \cong \frac{\mathbb{Z}}{n\mathbb{Z}}$ where \mathbb{Z} is the ring of integers.
- 4. Find the field of quotients of $\mathbb{Z}[i]$.
- 5. Prove that quotient ring of a commutative ring is commutative.

Practical No. - 14: Polynomial Rings

- 1. Let $f(x) = 2x^3 + 4x^2 + 3x + 2$ and $g(x) = 3x^4 + 2x + 4$ in $\mathbb{Z}_5[x]$. Find
- a. a) f(x) + g(x) b) $f(x) \cdot g(x)$ c) $\deg(f(x) \cdot g(x))$.
- 2. Let $f(x) = x^6 + 3x^5 + 4x^2 3x + 2$ and $g(x) = x^2 + 2x 3$ be polynomials in $\mathbb{Z}_7[x]$. Find q(x), $r(x) \in \mathbb{Z}_7[x]$ such that f(x) = g(x). q(x) + r(x) with $\deg(r(x)) < 2$. 3. a) Find all zeros of $f(x) = x^5 + 3x^3 + x^2 + 2x$ in \mathbb{Z}_5 .
- - b) Examine whether the polynomial $x^3 + 3x^2 + x 4$ is irreducible over the field $(\mathbb{Z}_7, +_7, \times_7)$.
- 4. Express the polynomial $x^4 + 4$ as a product of linear factors in $\mathbb{Z}_5[x]$.
- 5. Give an example of polynomials f(x) and g(x) in a ring $\mathbb{Z}_6[x]$ such that $\deg(f(x) \cdot g(x)) < g(x)$ $\deg(f(x)) + \deg(g(x)).$

Practical No. - 15: Reducible and Irreducible Polynomials

- 1. Using Eisenstein's criteria show that the following polynomials are irreducible over field of rationals. a) $x^2 + 8x - 2b$) $8x^3 + 6x^2 - 9x + 24$.
- 2. Prove that the polynomial $1 + x + x^2 + \cdots + x^{p-1}$ is irreducible over field of rationals, where p is a prime number.
- 3. Show that $\frac{\mathbb{Z}_5[x]}{\langle x^3+3x+2\rangle}$ is a field.
- 4. Show that $\frac{\mathbb{Z}_3[x]}{\langle x^3 + x + 1 \rangle}$ is not an integral domain.
- 5. Show that $\langle x^2 + 1 \rangle$ is not a prime ideal of $\mathbb{Z}_2[x]$.

T.Y. B.Sc. Mathematics (Elective) Semester-V MTH-DSE-351A: Number Theory

Total Hours: 30 Credits: 2

	Tours. 50 Credits. 2	-		
Course	 To know prime numbers and Diophantine equations. 			
Objectives	■ To study congruences and its properties.			
	■ To study perfect numbers, mersenne numbers and Fermat's numbers.			
	■ To know the concept of Fibonacci numbers and finite continued fractions			
Course	After successful completion of this course, students are expected to:			
Outcomes	 Understand prime numbers and their properties and also able to find solu 	tion of		
	Diophantine equations.			
	 Able to solve the real life problems by using congruences. 			
	 Able to distinguish perfect numbers, mersenne numbers and Fermat's numbers 			
	 Use Fibonacci numbers to real life problems and learn basic properties of 	Finite		
	continued fractions.			
Unit	Contents	Hours		
	Prime numbers and Diophantine Equation:			
	■ The Fundamental Theorem of Arithmetic			
Unit I	■ The Sieve of Eratosthenes	7		
	■ The Goldbach Conjecture			
	• The Diophantine Equation $ax + by = c$.			
	The theory of Congruences:			
	Basic Properties of Congruence			
	Binary and decimal representations of integers			
Unit II	Special Divisibility Tests	8		
Omt II	Linear Congruences and the Chinese Remainder Theorem	0		
	Fermat's Factorization Method			
	The Fermat's Little Theorem and pseudoprimes			
	■ Wilson's Theorem			
	Perfect numbers:			
I I 24 TIT	 Perfect Numbers 	7		
Unit III	 Mersenne Numbers 	7		
	Fermat's Numbers			
	Fibonacci numbers and Finite continued fractions:			
Init IV	The Fibonacci Sequence	8		
Unit IV	Certain Identities Involving Fibonacci Numbers	ð		
	Finite continued fractions			
Study	■ David M. Burton, <i>Elementary Number Theory</i> , (Sixth Edition), Tata			
Resources	McGraw-Hill Edition, New Delhi, 2007.			
	Ch.3: 3.1 to 3.3, Ch. 2: 2.5, Ch.4: 4.2 to 4.4, Ch.5: 5.2 to 5.4, Ch.11:			
	11.2 to 11.4, Ch 14: 14.2 to 14.3, Ch 15: 15.2			
	T. M. Apostol, Introduction to Analytic Number Theory, Springer			
	International student Edition, 1972.			
	Hari Kishan, Number Theory, Krishna Prakashan Media (p) Ltd, Meerat,			
	2019.			

T.Y. B.Sc. Mathematics (Elective) Semester-V MTH-DSE-351B: Lattice Theory

Total Hours: 30 Credits: 2

Total Hours: 30 Credits: 2			
Course	• T	To study the concept of a poset.	
Objectives	• T	To study the concept of a lattice and its diagrammatic representation.	
		To study the concept of ideals and its properties.	
	■ T	o study modular, distributive lattice and their inter-relation.	
Course	After s	successful completion of this course, students are expected to:	
Outcomes		Understand the structure of poset.	
		Represent lattice in diagrammatic form.	
	• L	earn the concepts of ideals and their properties as well as the conce	epts of
	h	omomorphism.	
	• U	Understand modular, distributive lattice and their interrelation.	
Unit		Contents	Hours
	Posets	S	
	• P	Posets and Chains	
	• D	Diagrammatical Representation of posets	
Unit I	• N	Maximal and Minimal elements of subset of a poset, Zorn's Lemma (7
	S	tatement only)	
	• S	upremum and infimum	
	• P	Poset isomorphism, Duality Principle.	
	Lattic	ees	
	• T	wo definitions of lattice and equivalence of two definitions	
Unit II	• N	Modular and Distributive inequalities in a lattice	8
	• S	ublattice and Semilattice	
	• C	Complete lattice	
	Ideals	and homomorphisms	
	• Io	deals, Union and intersection of Ideals	
Unit III	• P	rime Ideals, Principal Ideals	7
	• D	Oual Ideals, Principal dual Ideals	,
	• C	Complements, Relative Complements	
	• H	Iomomorphisms, Join and meet homomorphism	
	Modu	llar and distributive lattices	
	• N	Modular lattice	
Unit IV	• D	Distributive lattice	8
Omt 14	• S	ublattice of Modular lattice	U
	• H	Iomomorphic image of Modular lattice	
	• C	Complemented and Relatively complemented lattice	
Study	• V	Vijay K.Khanna, Lattices and Boolean Algebra, (Second Edition), Vikas	
Resources	P	Publ. Pvt. Ltd., 2004. (Chapter-2: Art30.1, 30.2, 30.3; Chapter-3: Art31.1,	
		1.2; Chapter-4: Art31.1, 31.2.)	
	• G	George Gratzer, General Lattice Theory, (Second Edition), Birkhauser, 2013.	

T.Y. B.Sc. Mathematics (Elective) Semester-V

MTH-DSE-352A: Practical on MTH-DSE-351A

Total l	Hours: 60 Credits: 2		
Course	To know prime numbers and Diophantine equations.		
Objectives	■ To study congruences and its properties.		
	To study perfect numbers, mersenne numbers and Fermat's numbers.		
	To know the concept of Fibonacci numbers and finite continued fractions		
Course	After successful completion of this course, students are expected to:		
Outcomes	 Understand prime numbers and their properties and also able to find solu 	tion of	
	Diophantine equations.		
	 Able to solve the real life problems by using congruences. 		
	 Able to distinguish perfect numbers, mersenne numbers and Fermat's numbers 		
	 Use Fibonacci numbers to real life problems and learn basic properties of 	Finite	
	continued fractions.	1	
Sr. No.	Contents	Hours	
1	Prime numbers 4		
2	Composite numbers	4	
3	The Sieve of Eratosthenes and Goldbach Conjecture	4	
4	Diophantine Equations	4	
5	Congruences	4	
6	Binary and decimal representations of integers, Special Divisibility Tests	4	
7	Linear Congruences	4	
8	The Fermat's Little Theorem, pseudoprimes and Wilson's Theorem 4		
9	Perfect numbers 4		
10	Mersenne Numbers 4		
11	Fermat's Numbers 4		
12	Fibonacci numbers 4		
13	Continued fractions 4		
14	k th convegent 4		
15	Applications of continued fractions to Diophantine Equations	4	

List of Practicals

Practical No. 1: Prime numbers

- 1. Write ppf of 2800.
- 2. Show that $\sqrt{7}$ is an irrational number.
- 3. Show that any prime number of the form 3p + 1 is of the form 6m + 1 where $p, m \in \mathbb{N}$.
- 4. Show that the only prime number of the form $n^3 1$ is 7.
- 5. Prove that there are infinitely prime numbers of the form 4k + 3.

Practical No. 2: Composite numbers

- 1. If $p \ge 5$ is a prime, then show that $p^2 + 2$ is composite.
- 2. If $p \neq 5$ is an odd prime, prove that either $p^2 1$ or $p^2 + 1$ is divisible by 10.
- 3. Prove that the product of two integers of the form 6n + 5 is of the form 6m + 1.

- 4. Assuming that P_n is the n^{th} prime number, establish that the sum $\frac{1}{P_1} + \frac{1}{P_2} + \cdots + \frac{1}{P_n}$ is never an integer.
- 5. Find the smallest positive integer n such that $f(n) = n^2 + 21n + 1$ is a composite number.

Practical No. 3: The Sieve of Eratosthenes and Goldbach Conjecture

- 1. Determine whether the integer 769 is prime by testing all primes $p \le \sqrt{769}$ as possible divisors. Do the same for integer 1009
- 2. Obtain all prime numbers between 2 and 100 by Siev of Eratosthenes method.
- 3. Find all prime numbers between 101 and 150 by Siev of Eratosthenes method.
- 4. Obtain all prime numbers between 121 and 170 by Siev of Eratosthenes method.
- 5. Show that the sum of twin primes p and p + 2 is divisible by 12 where p > 3.

Practical No. 4: Diophantine Equations

- 1. Determine the solutions in the integers of 56x + 72y = 40.
- 2. Determine integer solutions of the equation 221x + 35y = 11.
- 3. Determine all solutions in positive integers of 54x + 21y = 906.
- 4. Determine all solutions in the positive integers of the Diophantine equation 18x + 5y = 48.
- 5. Let n be the number of coins. If you make 77 strings of n, then 50 coins are short, but if you make 78 strings of n, it is exact. Find the smallest value of n.

Practical No. 5: Congruences

- 1. Show that $41 \mid (2^{20} 1)$.
- 2. Find the remainder when 2^{50} is divided by 7.
- 3. Give numbers a, b, k, n such that $ka \equiv kb \pmod{n}$ but $a \not\equiv b \pmod{n}$.
- 4. Find the remainder when $1! + 2! + 3! + 4! + \cdots + 99! + 100!$ is divided by 12.
- 5. What is the remainder when $1^5 + 2^5 + 3^5 + 4^5 + \dots + 99^5 + 100^5$ is divided by 4?

Practical No. 6: Binary and decimal representations of integers, Special Divisibility Tests

- 1. Write the representation of 105 with base 3.
- 2. Find the value of $(14313)_5$.
- 3. Find the last two digit number of the number 9^{9^9} .
- 4. Without performing the division, determine whether the integer 176521221 is divisible by 9.
- 5. Without performing the division, determine whether the integer 82617381 is divisible by 11.

Practical No. 7: Linear Congruences

- 1. Solve $34x \equiv 60 \pmod{98}$.
- 2. Solve $6x \equiv 15 \pmod{21}$.
- 3. Does the linear congruence $36x \equiv 16 \pmod{108}$ have a solution.
- 4. Find an integer which leaves remainder 5 when divided by 11 and 2 when divided by 19.
- 5. Solve the following system of linear congruences: $x \equiv 3 \pmod{5}$, $x \equiv 5 \pmod{7}$, $x \equiv 7 \pmod{9}$.

Practical No. 8: The Fermat's Little Theorem, pseudoprimes and Wilson's Theorem

- 1. Factorize 3901 by Fermat's factorization method.
- 2. Show that 341 is a pseudo prime number.
- 3. If $7 \nmid a$, then show that either $a^3 1$ or $a^3 + 1$ is divisible by 7.
- 4. Find the remainder when 11^{104} is divided by 17.
- 5. Show that $18! \equiv -1 \pmod{437}$.

Practical No. 9: Perfect numbers

- 1. Show that the integer $n = 2^{10}(2^{11} 1)$ is not perfect number.
- 2. If n is even perfect number then prove that $\sum_{d|n} \frac{1}{d} = 2$.
- 3. Show that a perfect square can not be a perfect number.
- 4. Let n be an even perfect number > 6. Show that the sum of digits of n is congruent to 1 modulo 9.
- 5. Show that the product of two odd prime numbers is not a perfect number.

Practical No. 10: Mersenne Numbers

- 1. Find the Smallest Divisor of M_{11} .
- 2. Show that M_{29} is a composite number.
- 3. From the congruence 5. $2^7 \equiv -1 \pmod{641}$, deduce that $2^{32} + 1 \equiv 0 \pmod{641}$. Hence 641 | F_5 .
- 4. Let p, q = 2p + 1 be prime numbers. Show that $q \mid M_p$ or $q \mid (M_p + 2)$ but not both.
- 5. Prove that the Mersenne number M_{13} is prime. Hence show that $n = 2^{12}(2^{13} 1)$ is perfect.

Practical No. 11: Fermat's Numbers

- 1. Find first five Fermat's numbers.
- 2. For $m \neq n$, prove that $(F_m, F_n) = 1$.
- 3. Show that F_5 is a composite number.
- 4. From the congruence $5.2^7 \equiv -1 \pmod{641}$, deduce that $2^{32} + 1 \equiv 0 \pmod{641}$.
- 5. For $n \ge 2$, show that the last digit of Fermat number $F_n = 2^{2^n} + 1$ is 7.

Practical No. 12: Fibonacci numbers

- 1. Show that $(u_n, u_{n+2}) = 1$ where $n \in \mathbb{N}$.
- 2. Prove that $u_m \mid u_n$ if and only if $m \mid n$.
- 3. Prove that gcd of two Fibonacci numbers is again a Fibonacci number.
- 4. Prove that $u_{n+5} \equiv 3u_n \pmod{5}$.
- 5. If $3|u_n$, then show that $9|\{(u_{n+1})^3 (u_{n-1})^3\}$.

Practical No. 13: Finite continued fractions

- 1. Express $\frac{187}{57}$ as finite simple continued fraction.
- 2. Express $\frac{19}{51}$ as finite simple continued fraction.
- 3. Express $\frac{-19}{51}$ as finite simple continued fraction.
- 4. Determine the rational number represented by [-2:2,4,6,8] as a finite simple continued fraction.
- 5. Determine the rational number represented by [4:2,1,3,1,2,4] as a finite simple continued fraction.

Practical No. 14: kth convergent

- 1. Find all k^{th} convergent of $\frac{19}{51}$.
- 2. Find all k^{th} convergent of $\frac{-19}{51}$.
- 3. Find all k^{th} convergent of [1:2,3,3,2,1].
- 4. Find all k^{th} convergent of [-3:1,1,1,1,3].
- 5. Find all k^{th} convergent of [-2:2,4,6,8].

Practical No. 15: Applications of continued fractions to Diophantine Equations

- 1. Represent [-1:2,1,6,1] as an odd number of partial denominators.
- 2. By using simple continued fraction, solve the Diophantine equation 19x + 51y = 1.

- 3. By using simple continued fraction, solve the Diophantine equation 18x + 5y = 24.
- 4. By using simple continued fraction, solve the Diophantine equation 123x + 360y = 99.
- 5. By using simple continued fraction, solve the Diophantine equation 56x + 72y = 40.

T.Y. B.Sc. Mathematics (Elective) Semester-V

MTH-DSE-352B: Practical on MTH-DSE-351B

Total Hours: 60 Credits: 2		
Course	To study the concept of a poset.	
Objectives	To study the concept of a lattice and its diagrammatic representation.	
	 To study the concept of ideals and its properties. 	
	To study modular, distributive lattice and their inter-relation.	
Course	After successful completion of this course, students are expected to:	
Outcomes	 Understand the structure of poset. 	
	 Represent lattice in diagrammatic form. 	
	■ Learn the concepts of ideals and their properties as well as the conce	epts of
	homomorphism.	
	 Understand modular, distributive lattice and their interrelation. 	Т
Sr. No.	Contents	Hours
1	Poset-I	4
2	Poset-II	4
3	Diagrammatic Representation-I	4
4	Diagrammatic Representation-II	
5	Lattices-I	4
6	Lattices-II	4
7	Sublattices	4
8	Semilattices	4
9	Ideals-I	
10	Ideals-II	
11	Complements	
12	Homomorphisms	
13	Modular lattices-I	
14	Modular lattices-II	4
15	Distributive lattices	4

List of Practicals

Practical No. 1: Poset-I

- 1. Show whether the relation $(x, y) \in R$, if $x \ge y$ defined on the set of positive integers is a partial order relation
- 2. Show that the relation 'Divides' defined on $\mathbb N$ is a partial order relation.
- 3. Show that in a poset P, a < a for no $a \in P$ and $a < b, b < c \Rightarrow a < c$.
- 4. Prove that intersection of two partial ordered relations on a non-empty set *P* is again a partial ordered relation on *P*.
- 5. Show that the inclusion relation R given by $x \subseteq y$ is a partial ordering on the power set of a set A.

Practical No. 2: Poset-II

- 1. Show that the relation R where $(x, y) \in R$ such that x < y defined on N, the set of all positive integers is neither a partially ordered relation nor an equivalence relation but is a total order relation.
- 2. Show that N under 'usual less than or equal to relation' forms a poset.

- 3. Let A, B be posets. Denote $A \times B = \{(a, b) : a \in A, b \in B\}$. For $(a_1, b_1), (a_2, b_2) \in A \times B$, define $(a_1, b_1) \le (a_2, b_2) \Leftrightarrow a_1 \le a_2$ in A and $b_1 \le b_2$ in B. Show that $(A \times B, \le)$ is a poset.
- 4. If (P, ρ) and (P, σ) are poset, then show that $(P, \rho \cap \sigma)$ is also a poset.
- 5. List all chains containing two elements in a poset {1, 2, 3, 6} under divisibility relation.

Practical No. 3: Diagrammatic Representation-I

- 1. Draw the Hass diagram for the poset {1, 2, 5, 6} under usual less than or equal to relation.
- 2. Draw the Hass diagram for the poset {1, 2, 5, 6} under divisibility relation.
- 3. Draw the Hasse diagram representing the partial ordering $\{(A, B) | A \subseteq B \}$ on the power set $\mathcal{P}(S)$ where $S = \{1, 2, 3\}$.
- 4. Draw the Hasse diagram of D_{15} .
- 5. Draw the Hasse diagram of D_{30} .

Practical No. 4: Diagrammatic Representation-II

- 1. Find all maximal elements and minimal elements in the poset {2, 3, 4, 6} under divisibility relation.
- 2. If S is non-empty finite subset of a poset P, then prove that S has maximal and minimal elements.
- 3. Let P be the poset $\{2, 3, 4, 6\}$ under divisibility relation. Show that P is self dual.
- 4. Prove that the two chains *S* and *T* under usual less than or equal to relation are dually isomorphic where $S = \{0, \dots, \frac{1}{n}, \dots, \frac{1}{3}, \frac{1}{2}, 1\}, T = \{0, \frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots, 1\}.$
- 5. Let P, Q be posets. Prove that a function $f: P \to Q$ is an isomorphism if and only if f is isotone and has an isotone inverse.

Practical No. 5: Lattices-I

- 1. Show that every chain is a lattice.
- 2. Show by an example that product of two chains need not be a chain.
- 3. Draw the lattice diagram of D_{20} and show that it is same as the product of two chains with three and two elements.
- 4. Let (L, \leq) be a lattice and $a, b, c, d \in L$. If $\leq b, c \leq d$, then prove that $a \land c \leq b \land d$ and $a \lor c \leq b \lor d$.
- 5. Let (L, \leq) be a lattice and $a, b, c \in L$. Prove that $a \land (b \lor c) \geq (a \land b) \lor (a \land c)$.

Practical No. 6: Lattices-II

- 1. Let (L, \leq) be a lattice and $a, b, c \in L$. Prove that $a \vee (b \wedge c) \geq (a \vee b) \wedge (a \vee c)$.
- 2. Let (L, \leq) be a lattice and $a, b, c \in L$. Show that $(a \land b) \lor (b \land c) \lor (c \land a) \leq (a \lor b) \land (b \lor c) \land (c \lor a)$.
- 3. If C_1 and C_2 are two chains with two or more elements, then show that $C_1 \times C_2$ is not a chain.
- 4. Let (L, \leq) be a lattice and $a, b, c \in L$. If $a \geq b$, then prove that $a \wedge (b \vee c) \geq b \vee (a \wedge c)$.
- 5. Give an example of a poset which is not a lattice.

Practical No. 7: Sublattices

- 1. Prove that every non-empty subset of chain is a sublattice.
- 2. Show that a non-empty intersection of two sublattices of a lattice L is again a sublattice of L.
- 3. Show by an example that intersection of two sublattices of a lattice L may not be a sublattice of L.
- 4. Show by an example that union of two sublattices of a lattice L may not be a sublattice of L.
- 5. Prove that a lattice L is a chain if and only if every non-empty subset of L is a sublattice.

Practical No. 8: Semilattices

- 1. Prove that dual of a complete lattice is a complete lattice.
- 2. Which of the following lattices is not a complete lattice?

- i) {1, 2, 3, ..., 10}under usual less than or equal to relation.
- ii) Zunder usual less than or equal to relation.
- 3. Give an example of a join semilattice which is not a meet semilattice.
- 4. Give an example of a meet semilattice which is not a join semilattice.
- 5. Give an example of a meet semilattice which is a join semilattice.

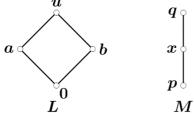
Practical No. 9: Ideals-I

- 1. Show that every ideal of a lattice L is a sublattice of L.
- 2. Show that intersection of two ideals of a lattice L is an ideal of L.
- 3. Show by an example that union of two dual ideals of a lattice L need not be an ideal of L.
- 4. Prove that every dual ideal of a lattice L is a sublattice of L.
- 5. Give an example of a sublattice of a lattice D_{10} which is not an ideal of D_{10} .

Practical No. 10: Ideals-II

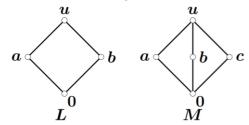
- 1. Show that intersection of two dual ideals of a lattice L is a dual ideal of L.
- 2. In a finite lattice *L*, prove that every ideal is a principal ideal.
- 3. Find all prime ideals in a lattice D_{18} .
- 4. Show by an example that union of two dual ideals of a lattice L need not be a dual ideal of L.
- 5. Let I be a prime ideal of a lattice L. Prove that L I is a dual prime ideal of L.

Practical No. 11: Complements


1. Show that the following lattice is a complemented lattice.

- 2. Show that the lattice D_{10} is a complemented lattice.
- 3. Prove that two bounded lattices A, B are complemented if and only if $A \times B$ is complemented.
- 4. Prove that dual of complemented latticce is complemented.
- 5. Prove that homomorphic image of a relatively complemented lattice is relatively complemented.

Practical No. 12: Homomorphisms


- 1. Show that every join homomorphism preserves order.
- 2. Show that every meet homomorphism preserves order.
- 3. Let L, M be lattices and 0' be the least element in M. If $\theta: L \to M$ is an onto homomorphism, then prove that $Ker\theta$ is an ideal of L.
- 4. Let L, M be lattices and $\theta: L \to M$ be an onto homomorphism. If 0 is the least element in L, then, prove that $\theta(0)$ is the least element in M.
- 5. Let L, M be lattices as given below.

Let $\phi: L \to M$ be defined by $\phi(0) = p$, $\phi(a) = x$, $\phi(b) = x$, $\phi(u) = q$. Show that ϕ is neither a meet nor a join homomorphism.

Practical No. 13: Modular lattices-I

- 1. Show that every chain is a modular lattice.
- 2. Prove that Pentagonal lattice is not modular.
- 3. Show that the following lattices are modular.

- 4. Prove that sublattice of a modular lattice is modular.
- 5. If a, b, c are elements of a modular lattice L with greatest element u such that $a \lor b = (a \land b) \lor c = u$, then show that $a \lor (b \land c) = b \lor (c \land a) = c \lor (a \land b) = u$.

Practical No. 14: Modular lattices-II

- 1. Prove that homomorphic image of a modular lattice is modular.
- 2. Prove that every complemented modular lattice is relatively complemented.
- 3. Show that two lattice L and M are modular if and only if $L \times M$ is modular lattice.
- 4. Prove that every distributive lattice is modular.
- 5. Show by an example that every modular lattice need not be distributive.

Practical No. 15: Distributive lattices

- 1. Show that every chain is a distributive lattice.
- 2. Prove that sublattice of a distributive lattice is distributive.
- 3. Prove that homomorphic image of a distributive lattice is distributive.
- 4. Prove that a lattice *L* is distributive if and only if whenever $a, b, c \in L$ such that $a \land c = b \land c$ and $a \lor c = b \lor c \Rightarrow a = b$.
- 5. If an element x has a complement in a distributive lattice L and $x \in [a, b] \subseteq L$, then show that x has a relative complement in [a, b].

T.Y. B.Sc. Mathematics (Vocational) Semester-V MTH-VSC-351: Programming in Python

Total Hours: 30 Credits: 2

1 Otal 1	Hours: 30 Credits: 2	
Course	To understand conditional statements.	
Objectives	 To study iterators and modules. 	
	To know the plotting of various graphs and charts using Python Matplotlib.	
	To know the applications of NumPy and SciPy for solving problems in the	subjects
	of curriculum.	
	After successful completion of this course, students are expected to:	
Outcomes	create and run Python programs using conditional statements.	
	 use iterators and modules for solving mathematical problems. 	
	 apply Python Matplotlib to plot various graphs and charts. 	
	 apply NumPy and SciPy for solving problems in the subjects of curriculum. 	
Unit	Contents	Hours
	Conditional Statements	
	 Conditional and alternative statements 	
	• Chained and nested conditionals (if, if-else, if-elif-else, nested if, nested if-	
Unit I	else)	7
	 Looping Statements (while, for) 	
	Python Functions	
	Python Classes and Objects	
	Iterators and Modules	
	Python Iterators	
	Python Polymorphism	
Unit II	Python Scope	8
	 Python Modules and Mathematical Functions 	
	Python String Formatting	
	Python Matplotlib	
	 Matplotlib Pyplot, Plotting and Markers 	
	Matplotlib Line, Labels and Title	
Unit III	Matplotlib Adding Grid Lines	7
	Matplotlib Subplot	
	 Matplotlib Scatter, Bars, Histograms and Pie Charts 	
	Some Applications:	
	■ Installation of NumPy and SciPy	
	 Applications of Python to matrices 	
Unit IV	 Applications of Python to groups 	8
	 Applications of Python to numerica analysis 	
	Applications of Python to differential equations	
Study	Downey, A. (2015). Think Python: How to Think Like a Computer	
Resources	Scientist (2nd ed.). O'Reilly Media, Inc.	
	Johansson, R. (2019). Numerical Python: Scientific Computing and Data	
	Science Applications with Numpy, SciPy and Matplotlib (2nd ed.). Apress.	
	Langtangen, H. P. (2009). Python Scripting for Computational Science	
	(3rd ed.). Springer Berlin Heidelberg.	

T.Y. B.Sc. Mathematics (Vocational) Semester-V MTH-VSC-352: Practical on MTH-VSC-351

Total I	Total Hours: 60 Credits: 2			
Course	■ To understand conditional statements.			
Objectives	 To study iterators and modules. 			
	 To know the plotting of various graphs and charts using Python Matplotlib. 			
	To know the applications of NumPy and SciPy for solving problems in the subjects			
	of curriculum.			
Course	After successful completion of this course, students are expected to:			
Outcomes	 create and run Python programs using conditional statements. 			
	 use iterators and modules for solving mathematical problems. 			
	 apply Python Matplotlib to plot various graphs and charts. 			
	 apply NumPy and SciPy for solving problems in the subjects of curriculum. 	T		
Sr. No.	Contents	Hours		
1	Conditional Statements	4		
2	Chained and nested conditionals	4		
3	Looping Statements	4		
4	Python Functions	4		
5	Python Iterators and Polymorphism	4		
6	Python Scope and Modules	4		
7	Mathematical Functions	4		
8	Python String Formatting	4		
9	Matplotlib Pyplot, Plotting and Markers	4		
10	Matplotlib Line, Labels and Title	4		
11	Matplotlib Scatter, Bars, Histograms and Pie Charts	4		
12	Applications of Python to matrices	4		
13	Applications of Python to groups	4		
14	Applications of Python to numerica analysis	4		
15	Applications of Python to differential equations	4		
Study	■ Downey, A. (2015). Think Python: How to Think Like a Computer			
Resources	Scientist (2nd ed.). O'Reilly Media, Inc.			
	■ Johansson, R. (2019). Numerical Python: Scientific Computing and Data			
	Science Applications with Numpy, SciPy and Matplotlib (2nd ed.). Apress.			
	■ Langtangen, H. P. (2009). Python Scripting for Computational Science (3rd			
	ed.). Springer Berlin Heidelberg.			

T.Y. B.Sc. Mathematics (On Job Training) Semester-V MTH-OJT-351: On Job Training/Internship

Total Hours: 120 Credits:4

TOWN ALOMADY AND CITATION I	
Course	To provide the students with actual work experience.
objectives	 To make aware prescribe standards and guidelines at work.
	To develop the employability of participating student.
	■ To avail an opportunities to eventually acquire job experiences.
Course	After successful completion of this course, students are expected to:
outcomes	• Get actual work experience with office and virtual exposure to various
	management styles, technical, industrial, and proceduralsystems.
	 Acquaint the knowledge related to working hours, work protocols and guidelines.
	 Understand the roles and responsibilities of employee as well as team work.
	 Justify job experiences that match their potentials, skills, and competencies.

Internship

An internship is a professional learning experience that offers meaningful, practical work related to a student's field of study or career interest. An internship gives a student the opportunity for career exploration and development, and to learn new skills.

On the job training

On the job training is a form of training provided at the workplace. During the training, employees are familiarized with the working environment they will become part of. Employees also get a hands-on experience using machinery, equipment, tools, materials, etc.

Internship / OJT Mechanism:

- 1. **Pre-Approval**: Students should seek approval from the college before starting the Internship / OJT. This ensures that the Internship / OJT aligns with the curriculum and meets the necessary criteria.
- Mentor and Supervisor: Each student should have an assigned mentor at the organization/industry
 where they are interning. Additionally, an Internship / OJT supervisor from the college will be appointed
 to guide and monitor the progress.
- Regular Reporting: Students should maintain regular communication with their supervisor and mentor, providing progress reports and seeking feedback.
- Professional Conduct: Students must adhere to professional conduct throughout the Internship / OJT, including punctuality, respect for colleagues, and adherence to the organization's/industry's policies and guidelines.
- 5. **Student Diary**: Students should maintain a diary to document their experiences, challenges faced, and lessons learned during the Internship / OJT.
- 6. **Final Report**: At the end of the Internship / OJT, students should submit a comprehensive final report, summarizing their accomplishments, contributions, and key takeaways.
- 7. **Evaluation**: The Internship / OJT is worth 4 credits (equivalent to 100 marks), and the evaluation will be divided into two categories: one by the mentor and the other by the Internship / OJT supervisor. The mentor's evaluation (internal examination) will carry 40 marks, and it will be based on the student's performance during the Internship / OJT. External examination will be conducted by mentor and supervisor which will be based on the student's diary, the final report prepared by the student, and their performance in the final viva voce, and will carry 60 marks. The total marks obtained by the students in both evaluations will be added together for the purpose of final evaluation. The evaluation of the students will be conducted by the mentor using the evaluation sheet provided by the college.

Internal Evaluation Criteria for Students by the Mentor:

- 1. **Quality of Work** (10 marks): How well did the student perform their assigned tasks during the Internship / OJT? Evaluate the accuracy, thoroughness, and attention to detail in their work.
- 2. **Initiative and Proactiveness** (10 marks): Did the student show initiative in taking on additional responsibilities or tasks beyond their assigned role? Did they demonstrate a proactive attitude towards problem-solving?
- 3. **Communication Skills** (10 marks): Assess the student's ability to communicate effectively with colleagues, superiors, and clients (if applicable). Consider both written and verbal communication.
- 4. **Problem-Solving Skills and Time Management** (10 marks): Evaluate the student's ability to analyze problems, propose solutions, and implement effective strategies to overcome challenges. How well did the student manage their time during the Internship / OJT? Were they able to meet project deadlines and handle multiple tasks efficiently?

External Evaluation Criteria for Students by the Supervisor and Mentor:

- 1. **Student Diary** (15 marks): Review the student's diary to understand their reflections, insights gained, and self-assessment of their performance during the Internship / OJT.
- 2. **Final Report** (15 marks): Evaluate the quality and comprehensiveness of the student's final report, including the clarity of their achievements and contributions.
- 3. **Presentation of Student in Viva Voce** (30 marks): Evaluate the responses given by the student to the questions asked by the faculty in the Viva Voce.

Evaluation Criteria for Final Viva Voce:

- 1. Presentation Skills
- 2. Knowledge of the Internship / OJT Project
- 3. Practical Application and Work Experience
- 4. Problem-Solving and Critical Thinking
- 5. Communication and Professionalism

SEMESTER-VI

T.Y. B.Sc. Mathematics (Major) Semester-VI MTH-DSC-361: Dynamical Systems

Total Hours: 30 Credits: 2

Total I	al Hours: 30 Credits: 2		
Course	-	To study the concept of equilibrium points and stability of dynamical systems.	
Objectives	•	To learn how to formulate mathematical models for real-world phenomena	using
		dynamical systems (e.g., biological, mechanical, economic, etc.).	J
	•	To understand how to visualize and interpret the behavior of s	vstems
		computationally.	•
		To introduce the main features of dynamical systems, particularly as they arise	e from
		systems of ordinary differential equations as models in applied mathematics.	
Course	Afte	er successful completion of this course, students are expected to:	
Outcomes	•	analyze the stability of equilibrium points using method like linearization.	
		formulate dynamical systems models for real-world phenomena from various	fields
		such as biology, physics, and economics.	meras,
		use computational tools to simulate and visualize the behavior of dynamical sy	zstems
		understanding the qualitative nature of solutions.	, 5001110,
		apply appropriate mathematical techniques, such as phase plane analysis, to stu	ıdv the
		qualitative behavior of dynamical systems.	ady the
Unit		Contents	Hours
	E.		Hours
	Firs	st-Order Equations	
TT *4 T	•	System of first order differential equations	_
Unit I	•	Solution graph and phase line	7
	•	The Logistic Population Model	
	•	Bifurcations	
	Pla	nar Linear Systems	
	•	Planar linear systems	
Unit II	•	Eigenvalues and eigenvectors	8
	•	Solving linear systems	
	•	The Linearity Principle	
	Pha	se Portraits	
	•	Saddle, source and sink	
Unit III	•	Center, spiral sink and spiral source	8
	•	Repeated eigen values with single eigenvector	
	•	Changing coordinates	
	Cla	ssification of Planar Systems and Exponential of Matrix	
	•	The Trace-determinant plane, Dynamical classification	
Unit IV	•	Exponential of a matrix	7
	•	Solving a system of first order differential equations by using the exponential	
		of a matrix.	
Study	-	Morris Hirsch, S. Smale and Devaney, Differential Equations, Dynamical	
Resources		Systems and Introduction to Chaos, Academic Press, Elsevier, Second	
		Edition, 2004. (Ch1: 1.1-1.6, Ch2: 2.1-2.7, Ch3: 3.1-3.4, Ch4: 4.1-4.2,	
		Ch6: 6.4)	
	•	Lawrence Perko, Differential Equations and Dynamical Systems, Springer-	

verlag, thew Tork, Third Edition, 2001. (Cli1. 1.1-1.4)	Verlag, New York, Third Edition, 2001. (Ch1: 1.1-1.4)	
---	---	--

T.Y. B.Sc. Mathematics (Major) Semester-VI MTH-DSC-362: Linear Algebra

	To 1		
Course Objectives	To know vector spaces, subspaces, quotient space and linear span.		
Objectives	 To study basis and dimension of finite dimensional vector spaces. 		
	 To study linear transformations. 		
	 To know properties of eigenvalues, eigenvectors and diagonalisation of 		
	matrices.		
Course	After successful completion of this course, students are expected to:		
Outcomes	 understand subspaces, linear span and their properties which is one of the 	ie	
	building blocks of pure mathematics.		
	 explain basis and dimensions, Extension theorem. 		
	 explain concepts of linear transformations, singular, non-singular and 		
	invertible linear transformations.		
	 learn eigenvalues and eigenvectors, diagonalisation of matrices. 	ı	
Unit	Contents	Hours	
	Vector Spaces		
	 Vector spaces, Subspaces, Examples 		
Unit I	 Necessary and sufficient conditions for a subspace 	7	
	 Addition, Intersection and union of subspaces 		
	 Quotient space, linear span and its properties 		
	Basis and Dimensions		
	 Linear dependence and independence 		
Unit II	 Basis and dimension of finite dimensional vector spaces 	8	
	 Extension theorem 		
	 Theorems on basis and dimensions 		
	Linear Transformations		
	 Linear transformation and examples 		
	 Kernel and image of linear transformations 		
Unit III	 Isomorphism theorems and Rank-nullity theorem 	7	
	Algebra of linear transformations	-	
	 Singular and non-singular linear transformations 		
	 Invertible linear transformations 		
	Eigenvalues and Eigenvectors		
	 Matrix polynomial, Characteristics polynomial, Minimum polynomial 		
** ** ***	 Eigenvalues and Eigenvectors 		
Unit IV	Cayley Hamilton theorem	8	
	 Matrix representation of linear operator and linear transformation 		
	 Diagonalisation of Matrices 		
Study	N. S. Gopalkrishnan, <i>University Algebra</i> , New Age Int. Pvt. Ltd, 2015.		
Resources	S. Lipschutz, <i>Theory and Problems of Linear Algebra</i> , Schaum's		
	outline series, SI(Metric) edition, McGraw Hill Book Company, 1987.		
	 Vivek Sahai and Vikas Bist, Linear Algebra, Second Edition, Narosa 		
	Publishing house, 2022.		
	 Balaram Dubey, Introductory Linear Algebra, Asian books Int. Pvt. 		
	Ltd, 2007.		
		•	

T.Y. B.Sc. Mathematics (Major) Semester-VI MTH-DSC-363: Metric Sapces

	lours: 30 Credits: 2	
Course	 To know basics concepts of matric spaces. 	
Objectives	 To study continuous functions on metric spaces. 	
	 To learn connected and complete of metric spaces. 	
	 To discuss compactness of matric spaces. 	
	After successful completion of this course, students are expected to:	
Outcomes	 understand equivalence and countability of sets, basics of metric space and lin 	nits on
	it.	
	 test continuity and homeomorphism of a function on metric spaces. 	
	• find the interrelation bnetween connected and complete of metric spaces.	
	 Check compactness of metric spaces. 	
Unit	Contents	Hours
	Metric Spaces	
Unit I	 Equivalence and Countability 	7
Omt 1	 Metric Spaces 	,
	 Limits in Metric Spaces 	
	Continuous functions on Metric Spaces	
	 Reformulation of definition of continuity in Metric Spaces. 	
Unit II	 Continuous function on Metric Spaces. 	8
Omt II	Open Sets	O
	■ Closed Sets	
	 Homeomorphisms. 	
	Connected Metric Spaces and Complete of Metric Spaces	
	More about Sets	
	 Connected Set 	
Unit III	 Bounded and Totally bounded sets 	7
	■ Complete Metric Spaces	
	 Properties of Complete Metric Spaces 	
	 Contraction Mapping on Metric Spaces. 	
	Compactness of Metric Spaces	
	 Compact Metric Spaces. 	
Unit IV	 Continuous function on compact Metric Spaces. 	8
	 Continuity of inverse function 	
	Uniform Continuity	
Study	R. R. Goldberg, <i>Methods of Real Analysis</i> , Oxford & IBH Publishing Co.	
Resources	PVT. LTD, 2nd Edition, 1976. Chapter I: 1.5, 1.6, Chapter IV: 4.2, 4.3,	
	Chapter V: 5.2,5.3, 5.4, 5.5 Chapter VI: 6.1,6.2,6.3.6.4,6.5,6.6,6.7,6.8	
	S. C. Malik and SavitaArora, <i>Mathematical Analysis</i> , Second Edition, New	
	Age International Pvt. Ltd., New Delhi, 2010.	
	D. Somsundaram and B. Chaudhari, A First Course in Mathematical Anglysis Norces Publishing House New Delhi 2018	
	Analysis, Narosa Publishing House, New Delhi. 2018.	

T.Y. B.Sc. Mathematics (Major) Semester-VI MTH-DSC-364: Laplace Transforms

	Iours: 30 Credits: 2	
Course	 To know the concept of Laplace transforms and its properties. 	
Objectives	• To study the concept of inverse Laplace transforms and its properties.	
	 To understand the concept of convolution. 	
	• To study methods in Laplace transforms which are useful for	solving
	differential equations.	
Course	After successful completion of this course, students are expected to:	
Outcomes	• find Laplace transforms of given function.	
	 solve Inverse Laplace transforms of given function. 	
	 apply convolution theorem to find integration. 	
	 apply Laplace transform in solving differential equations. 	
Unit	Contents	Hours
	Laplace Transforms	
	 Definition and existence of Laplace transform. 	
	 Laplace transforms of elementary functions and validity. 	
Unit I	 Properties of Laplace transform. 	7
	 Laplace transforms of derivatives and real integrals. 	
	• Multiplication by t^n .	
	■ Division by <i>t</i> .	
	Inverse Laplace Transform	
	 Definition and use of table. 	
Unit II	 Properties of inverse Laplace transforms. 	8
	 Inverse Laplace transforms of derivatives and real integrals. 	
	 Multiplications by s. 	
	• Division by <i>s</i> .	
	Convolution Theorem	
	 Laplace transforms of periodic functions. 	
Unit III	Convolution theorem.	7
	 Evaluation of inverse Laplace transform by convolution theorem. 	
	• Use of partial fractions.	
	Applications to Differential Equations	
TT *4 TT7	 Solution of linear differential equation with constant coefficients by 	
Unit IV	using Laplace transforms.	8
	 Laplace transforms of Heaviside's unit step functions. Laplace transforms of Direct delta functions. 	
Ctrade.	Laplace transforms of Dirac-delta functions. Murry P. Spiegel, Theory and problems of Laplace transforms.	
Study Resources	Murry R. Spiegel, Theory and problems of Laplace transforms, Schoum's Outline Series, McGreyy Hill Ltd, New York, 1965.	
Acsources	Schaum's Outline Series, McGraw Hill Ltd, New York, 1965.	
	A. R. Vasishtha and R. K. Gupta, <i>Integral transforms</i> , Krishna Prokashan Madia (P) I td.	
	Prakashan Media (P) Ltd.	1

T.Y. B.Sc. Mathematics (Major with IKS) Semester-VI MTH-DSC-365: Ancient Indian Mathematics

Total I	Hours: 30 Credits: 2	
Course	 To Study the contributions of ancient Indian Mathematicians 	
Objectives	■ To study the multiplication of numbers by using Vedic Mathematics technique	s.
	 To study the division of numbers by using Vedic Mathematics techniques. 	
	 To study the exponent of numbers by using Vedic Mathematics techniques. 	
Course	After successful completion of this course, students are expected to:	
Outcomes	• familiar with the work of ancient Indian Mathematicians.	
	 knows and able to use the Vedic Mathematics techniques for multiplicate 	tion of
	numbers.	
	 knows and able to use the Vedic Mathematics techniques for division of number 	ers.
	 knows and able to use the Vedic Mathematics techniques for exponent of numbers 	bers.
Unit	Contents	Hours
	Work of Indian Mathematicians	
	■ Aryabhatt	
	■ Brahmagupt	
Unit I	■ Bhaskara I	7
	■ Mahaviracharya	
	■ Madhava	
	■ Srinivasa Ramanujan	
	Multiplication	
	 Ekadhikenpurven method (multiplication of two numbers of two digits) 	
	 Eknunenpurven method (multiplication of two numbers of three digits) 	
Unit II	 Urdhvatiragbhyam method (multiplication of two numbers of three digits) 	8
	• NikhilamNavtashchramamDashtaha (multiplication of two numbers of three	
	digits)	
	■ Combined Operations	
	Division and Divisibility	
	 Division 	
	 NikhilamNavtashchramamDashtaha (two digits divisor) 	
Unit III	 ParavartyaYojyet method (three digits divisor) 	7
	 Divisibility 	
	 Ekadhikenpurven method (two digits divisor) 	
	Eknunenpurven method (two digits divisor)	
	Power and Root	
	Square (two digit numbers)	
Unit IV	Cube (two digit numbers)	8
	Square root (four digit number)	
	Cube root (six digit numbers)	
Study	 Jagadguru Swami Bharati Krishna Tirthaji Maharaja and V. S. Agarwala, 	
Resources	Vedic Mathematics. Motilal Banarsidass, New Delhi, 1985.	
	■ B.G. Bapat and Dilip Kulkarni, Vaidik Ganit (Part-1). Smita Printers, Pune,	
	1982.	

- B.G. Bapat and Dilip Kulkarni, Vaidik Ganit (Part-2). Smita Printers, Pune, 1983.
- B.G. Bapat and Dilip Kulkarni, Vaidik Ganit (Part-3). Smita Printers, Pune, 1984.
- B.G. Bapat and Dilip Kulkarni, Vaidik Ganit (Part-4). Smita Printers, Pune, 1985.
- B. Mahadevan, Nagendra Pavana, and Vinayak Rajat Bhat, Introduction to Indian Knowledge System: Concepts and Applications. PHI Learning, Delhi, 2022.

T.Y. B.Sc. Mathematics (Major) Semester-VI MTH-DSC-366: Practical on MTH-DSC-361

Total Hours: 60 Credits: 2

1 Utai i	Hours: 60 Credits: 2			
Course	To study the concept of equilibrium points and stability of dynamical systems.			
Objectives	To learn how to formulate mathematical models for real-world phenomena	using		
	dynamical systems (e.g., biological, mechanical, economic, etc.).			
	■ To understand how to visualize and interpret the behavior of s	ystems		
	computationally.			
	■ To introduce the main features of dynamical systems, particularly as they aris	se from		
~	systems of ordinary differential equations as models in applied mathematics.			
Course Outcomes	After successful completion of this course, students are expected to:			
Outcomes	analyze the stability of equilibrium points using method like linearization.			
	• formulate dynamical systems models for real-world phenomena from various	fields,		
	such as biology, physics, and economics.			
	• use computational tools to simulate and visualize the behavior of dynamical syste			
	understanding the qualitative nature of solutions. apply appropriate mathematical techniques, such as phase plane analysis, to students.	ıdı tha		
	 apply appropriate mathematical techniques, such as phase plane analysis, to studied qualitative behavior of dynamical systems. 	ady the		
Sr. No.	Contents	Hours		
1		4		
	First order equations	-		
2	Qualitative behavior	4		
3	Phase line	4		
4	Bifurcation	4		
5	Planar linear systems	4		
6	Eigenvalues and eigenvectors	4		
7	Solving linear systems-I	4		
8	Solving linear systems-II	4		
9	Phase Portraits-I	4		
10	Phase Portraits-II	4		
11	Phase Portraits-III	4		
12	Changing coordinates	4		
13	Trace-determinant plane	4		
14	Exponential of a matrix-I	4		
15	Exponential of a matrix-II	4		
Study	 Morris Hirsch, S. Smale and Devaney, Differential Equations, Dynamical 			
Resources	Systems and Introduction to Chaos, Academic Press, Elsevier, Second			
	Edition, 2004.			
	Lawrence Perko, Differential Equations and Dynamical Systems, Springer-			
	Verlag, New York, Third Edition, 2001.			

List of Practicals

Practical No. - 1: First order equations

1. Find the general solution of the differential equation x' = ax + 3, where a is a parameter.

- 2. Find the general solution of the differential equation x' = ax(1-x), where a is a parameter.
- 3. For the differential equation $x' = \cos x$, find all equilibrium solutions and determine whether they are sorce, sink or neither.
- 4. For the differential equation $x' = x^2 x 2$, find all equilibrium solutions and determine whether they are sorce, sink or neither.
- 5. For the differential equation $x' = x^3 + x^2 2x$, find all equilibrium solutions and determine whether they are sorce, sink or neither.

Practical No. - 2: Qualitative behavior

- 1. Discuss the qualitative behavior of $x' = x^3 x$.
- 2. Discuss the qualitative behavior of $x' = x x^3$.
- 3. Sketch the solution graphs for $x' = |1 x^2|$.
- 4. Draw the solution graphs for $x' = \cos x$.
- 5. Draw the solution graphs for $x' = x^2 x^4$.

Practical No. - 3: Phase line

- 1. Sketch the phase line for $x' = x x^3$.
- 2. Sketch the phase line for x' = x(1-x).
- 3. Sketch the phase line for $x' = \sin x$.
- 4. Sketch the slope field for $x' = x^3 x$.
- 5. Sketch the slope field for $x' = x^4 x^2$.

Practical No. - 4: Bifurcation

- 1. Sketch the bifurcation diagram for $x' = x^2 ax$, where a is a parameter.
- 2. Sketch the bifurcation diagram for $x' = ax x^2$, where a is a parameter.
- 3. Sketch the bifurcation diagram for $x' = a x^2$, where a is a parameter.
- 4. Sketch the bifurcation diagram for x' = x(1-x) a, where a is a parameter.
- 5. Sketch the bifurcation diagram for $x' = \frac{x}{10}(10 x) a$, where a is a parameter.

Practical No. - 5: Planar linear systems

- 1. Consider the second order differential equation with constant coefficients x'' + ax' + bx = 0. Convert this equation into an equivalent system of first order equation.
- 2. Convert the LCR circuit equation LCx'' + RCx' + x = v(t) into an equivalent system of first order equation.
- 3. Consider the system x' = x, y' = y. Sketch the vector field.
- 4. Consider the system x' = x, y' = -y. Sketch the solution curves.
- 5. Consider the system x' = -x, y' = y. Sketch the vector field and solution curves.

Practical No. - 6: Eigenvalues and eigenvectors

- 1. Find the eigenvalues of the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$.
- 2. Describe all possible 2×2 matrices whose eigenvalues are 0 and 1.
- 3. If A is a non-singular matrix, then show that the eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A.
- 4. Find the eigenvectors of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 5. Find the eigenvectors of the matrix $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$.

Practical No. - 7: Solving linear systems-I

- Find two solutions of the system \$\frac{dx}{dt} = x + 3y, \frac{dy}{dt} = x y.\$
 Find two solutions of the system \$\frac{dx}{dt} = -8x 5y, \frac{dy}{dt} = 10x + +7y.\$
- 3. Find the general solution of the differential equation x'' + 3x' + 2x = 0.
- Find the general solution of the differential equation x'' 5x' + 6x = 0.
- Find the general solution of x' = -x, y' = 2y.

Practical No. - 8: Solving linear systems-II

- 1. Find the general solution of $X' = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} X$. 2. Find the general solution of $X' = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} X$. 3. Find the general solution of $X' = \begin{pmatrix} a & b \\ c & a \end{pmatrix} X$, where bc > 0. 4. Find the general solution of $X' = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} X$.

Practical No. - 9: Phase Portraits-I

- 1. Sketch the phase portrait of $X' = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix} X$.
- 2. Sketch the phase portrait of $X' = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix} X$.

- 3. Sketch the phase portrait of $X' = \begin{pmatrix} 1 & -1/0 \\ 0 & -2 \end{pmatrix} X$.

 4. Sketch the phase portrait of $X' = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} X$.

 5. Sketch the phase portrait of $X' = \begin{pmatrix} 14 & -10 \\ 5 & -1 \end{pmatrix} X$.

Practical No. - 10: Phase Portraits-II

- 1. Sketch the phase portrait of $X' = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix} X$.
- 2. Sketch the phase portrait of $X' = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} X$.
- 3. Sketch the phase portrait of $X' = \begin{pmatrix} -1 & 3 \\ -3 & -1 \end{pmatrix} X$.
- 4. Sketch the phase portrait of $X' = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} X$.
- 5. Sketch the phase portrait of $X' = \begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix} X$.

Practical No. - 11: Changing coordinates-I

- 1. Consider the system $X' = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix} X$. Find the matrix T that puts A in canonical form.
- 2. Consider the system $X' = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} X$. Find the matrix T that puts A in canonical form.
- 3. Consider the system $X' = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} X$. Find the matrix T that puts A in canonical form.
- 4. Consider the system $X' = \begin{bmatrix} 3 & 4 \\ -2 & -1 \end{bmatrix} X$. Sketch the phase portrait of $Y' = (T^{-1}AT)Y$, where $T^{-1}AT$ is in
- 5. Consider the system $X' = \begin{bmatrix} -6 & 4 \\ -4 & 2 \end{bmatrix} X$. Sketch the phase portrait of $Y' = (T^{-1}AT)Y$, where $T^{-1}AT$ is in canonical form.

Practical No. - 12: Changing coordinates-II

1. Find the general solution of X' = AX by obtaining canonical form of $A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$

- Find the general solution of X' = AX by obtaining canonical form of A =
 \begin{align*} -6 & 4 \\ -4 & 2 \end{align*}.

 Find the general solution of X' = AX by obtaining canonical form of A =
 \begin{align*} 3 & 4 \\ -2 & -1 \end{align*}.

 Find the general solution of X' = AX by obtaining canonical form of A =
 \begin{align*} 1 & 2 \\ 3 & 2 \end{align*}.

 Find the general solution of X' = AX by obtaining canonical form of A =
 \begin{align*} 1 & 2 \\ 3 & 2 \end{align*}.

Practical No. - 13: Trace-determinant plane

- 1. Classify the equilibrium points of the system $X' = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} X$.

- Classify the equilibrium points of the system $X' = \begin{bmatrix} 4 & 2 \\ 3 & 2 \end{bmatrix} X$.

 Classify the equilibrium points of the system $X' = \begin{bmatrix} -3 & -8 \\ 4 & -6 \end{bmatrix} X$.

 Without finding the eigenvalue of the matrix $A = \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}$, determine the nature of the eigenvalues.

 Without finding the eigenvalue of the matrix $A = \begin{bmatrix} 5 & -3 \\ -8 & -6 \end{bmatrix}$, determine the nature of the eigenvalues.

Practical No. - 14: Exponential of a matrix-I

- 1. Find the exponentials of $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$.
- 2. Find e^A , where $A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$
- 3. Find e^{tA} , where $A = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$ and $\lambda \neq 0$.
- 4. Compute the exponentials of $A = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$.
- 5. Show that if X is an eigenvector of A corresponding to the eigenvalue λ , then X is also an eigenvector of e^A corresponding to the eigenvalue e^{λ} .

Practical No. - 15: Exponential of a matrix-II

- 1. Find 2×2 matrices A and B such that $e^{A+B} \neq e^A e^B$.
- 2. Find the general solution of the system $X' = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.
- 3. Solve the system $X' = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$.
- 4. Find e^{At} and solve the linear system $X' = \begin{pmatrix} -2 & -1 \\ 1 & -3 \end{pmatrix} X$ with $X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- 5. Solve the system $y_1' = 5y_1 + 4y_2$, $y_2' = y_1 + 2y_2$ subject to $y_1(0) = 2$, $y_2(0) = 3$.

T.Y. B.Sc. Mathematics (Major) Semester-VI MTH-DSC-367: Practical on MTH-DSC-362

Total Hours: 60 Credits: 2

10ta11	Total Hours: 60 Credits: 2		
Course	To know vector spaces, subspaces, quotient space and linear span.		
Objectives	 To study basis and dimension of finite dimensional vector spaces. 		
	 To study linear transformations. 		
	 To know properties of eigenvalues, eigenvectors and diagonalisation of 		
	matrices.		
	After successful completion of this course, students are expected to:		
Outcomes	• understand subspaces, linear span and their properties which is one of the		
	building blocks of pure mathematics. explain basis and dimensions. Extension theorem		
	explain busis and difficultions, Extension theorem.		
	 explain concepts of linear transformations, singular, non-singular and invertible linear transformations. 		
	learn eigenvalues and eigenvectors, diagonalisation of matrices.		
Sr. No.	Contents	Hours	
1	Vector spaces	4	
2	Subspaces	4	
3	Quotient space and Linear span	4	
4	Linearly dependent sets	4	
5	Linearly independent sets	4	
6	Basis of vector spaces	4	
7	Dimension of vector spaces	4	
8	Linear Transformations	4	
9	Kernel and Image of linear Transformation	4	
10	Singular, Non-singular and Invertible linear transformations	4	
11	Matrix of associate to a linear transformations	4	
12	Eigenvalues	4	
	Eigenvectors	4	
14	Cayley-Hamilton theorem	4	
15	Similar and Diagonalizable Matrices	4	
Study	N. S. Gopalkrishnan, <i>University Algebra</i> , New Age Int. Pvt. Ltd, 2015.		
Resources	S. Lipschutz, <i>Theory and Problems of Linear Algebra</i> , Schaum's		
	outline series, SI(Metric) edition, McGraw Hill Book Company, 1987.		
	 Vivek Sahai and Vikas Bist, <i>Linear Algebra</i>, Second Edition, Narosa Publishing house, 2022. 		
	 Balaram Dubey, <i>Introductory Linear Algebra</i>, Asian books Int. Pvt. 		
	Ltd, 2007.		

List of Practicals

Practical No. 1: Vector spaces

1. Is \mathbb{R} a \mathbb{C} -vector space under usual addition and multiplication of numbers? Justify.

2. If \mathbb{R} is the field reals and $\mathbb{R}^n = \{(x_1, x_2, x_3, \dots, x_n) : x_i \in \mathbb{R} \text{ for all } i\}$, then \mathbb{R}^n is a \mathbb{R} -vector space under the following addition and scalar multiplication:

$$(x_1, x_2, x_3, \dots, x_n) + (y_1, y_2, y_3, \dots, y_n) = (x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots, x_n + y_n)$$
$$\lambda(x_1, x_2, x_3, \dots, x_n) = (\lambda x_1, \lambda x_2, \lambda x_3, \dots, \lambda x_n)$$

where $(x_1, x_2, x_3, \dots, x_n), (y_1, y_2, y_3, \dots, y_n) \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.

3. Let F be a field and $F_{m \times n} = \{ [\alpha_{ij}]_{m \times n} : \alpha_{ij} \in F \text{ for all } i, j \}$. Show that $F_{m \times n}$ is a F-vector space under the following addition and scalar multiplication:

$$A + B = [\alpha_{ij} + \beta_{ij}]_{m \times n}$$
 and $\lambda A = [\lambda \alpha_{ij}]_{m \times n}$

for all $A = [\alpha_{ij}]_{m \times n}$, $B = [\beta_{ij}]_{m \times n} \in F_{m \times n}$ and $\lambda \in F$.

- 4. Consider an abelian group $V = \mathbb{R}^+$ under the usual multiplication of reals. Show that V is a \mathbb{R} -vector space under the scalar multiplication: $\alpha x = x^{\alpha}$ for all $x \in V$ and $\alpha \in \mathbb{R}$.
- 5. Is $V = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}_{2 \times 2} : ad bc = 1 \}$ a \mathbb{R} -vector space under usual addition and scalar multiplication of matrices.

Practical No. 2: Subspaces

- 1. Let F be a field and F^n a F-vector space. Denote $W = \{(a_1, a_2, a_3, \dots, a_n) \in F^n : a_1 + a_2 + a_3 + \dots + a_n = 0\}$. Show that W is a subspace of F^n .
- 2. Consider \mathbb{R}^2 as a \mathbb{R} -vector space and $W = \{(a, b) \in \mathbb{R}^2 : a > 0\}$. Is W a subspace of \mathbb{R}^2 ? Justify.
- 3. Let $V = \mathbb{R}^3$ be a \mathbb{R} -vector space and $W = \{(x, y, z) \mid x, y, z \in \mathbb{R} \text{ and } x 3y + 4z = 0\}$. Show that W is a subspace of V.
- 4. Let $V = \mathbb{R}^3$ be a \mathbb{R} -vector space and $W_1 = \{(a, b, 0) \in V : a, b \in \mathbb{R}\}$, $W_2 = \{(0, 0, c) \in V : c \in \mathbb{R}\}$ be subspaces of V. Is $W_1 \cup W_2$ a subspace of V? Justify.
- 5. Consider \mathbb{R}^3 as \mathbb{R} -vector space and $W_1 = \{(a, b, 0): a, b \in \mathbb{R}\}$ and $W_2 = \{(0, 0, c): c \in \mathbb{R}\}$. Find $W_1 \oplus W_2$.

Practical No. 3: Quotient space and Linear span

- 1. Let W be a subspace of a F-vector space V. Prove that \overline{T} is a subspace of $\frac{V}{W}$ if and only if there exists a subspace V_1 of V such that $W \subseteq V_1$ and $\overline{T} = \frac{V_1}{W}$.
- 2. Consider \mathbb{R}^3 as a \mathbb{R} -vector space. Find the subspace generated by (1,2,0) and $(0,0,4) \in \mathbb{R}^3$.
- 3. Consider \mathbb{R}^3 as a \mathbb{R} -vector space and $S = \{(1,2,1), (1,1,-1), (4,5,-2)\}$. Determine whether the vector (1,1,0) is present in L(S) or not.
- 4. Find the generating set for the subspace W of symmetric matrices in the \mathbb{R} -vector space $\mathbb{R}_{2\times 2}$.
- 5. Give an example of a *F*-vector space *V* and $S, T \subseteq V$ such that $L(S) \subseteq L(T)$ but $S \nsubseteq T$.

Practical No. 4: Linearly dependent sets

- 1. Consider \mathbb{R}^3 as a \mathbb{R} -vector space and $v_1=(1,0,0), v_2=(0,1,1), \ v_3=(1,1,1)\in\mathbb{R}^3$. Show that $S=\{v_1,v_2,v_3\}$ is a linearly dependent set.
- 2. Let *V* be a *F*-vector space and $u, v, w \in V$. If $\{u, v, w\}$ is a linearly independent set, then prove that $\{u + v, v + w, w u\}$ is a linearly dependent set.
- 3. Let *V* be a *F*-vector space and $u, v, w \in V$. If $\{u, v, w\}$ is a linearly independent set, then show that $\{u v, v w, w u\}$ is a linearly dependent set.
- 4. In a \mathbb{R} -vector space \mathbb{R}^3 , check whether the set $\{(3,3,1),(1,1,0),(0,0,1)\}$ is linearly dependent or not.
- 5. Consider \mathbb{R}^3 as a \mathbb{R} -vector space and $v_1 = (1, 0, 2), v_2 = (0, -2, 5), v_3 = (2, -6, 19) \in \mathbb{R}^3$. Show that $S = \{v_1, v_2, v_3\}$ is a linearly dependent set.

Practical No. 5: Linearly independent sets

- 1. Show that $\{1, i\}$ is a linearly dependent set in a \mathbb{C} -vector space \mathbb{C} but it is linearly independent in a \mathbb{R} -vector space \mathbb{C} .
- 2. Let *V* be a *F*-vector space and $u, v, w \in V$. If $\{u, v, w\}$ is a linearly independent set, then prove that $\{u + v, v + w, w + u\}$ is a linearly independent set.
- 3. Let *V* be a *F*-vector space and $u, v, w \in V$. If $\{u, v, w\}$ is a linearly independent set, then prove that $\{u + v, u v, u 2v + w\}$ is a linearly independent set.
- 4. Consider \mathbb{R}^4 as a \mathbb{R} -vector space and $v_1 = (1, 0, 1, 0), v_2 = (0, 1, 0, 1), v_3 = (0, 0, 0, 2) \in \mathbb{R}^4$. Show that $S = \{v_1, v_2, v_3\}$ is a linearly independent set.
- 5. Consider $V = \{A \in \mathbb{R}_{3\times 3} : A \text{ is an upper triangular matrix} \}$ as a \mathbb{R} -vector space. Find any linearly independent set in V containing six elements.

Practical No. 6: Basis of vector spaces

- 1. Consider \mathbb{R}^n as a \mathbb{R} -vector space and $e_i = (0, 0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^n$ for all $1 \le i \le n$ where 1 is at i^{th} -place. Show that $\{e_1, e_2, \dots, e_n\}$ is a basis for \mathbb{R}^n over \mathbb{R} .
- 2. Consider \mathbb{R}^3 as a \mathbb{R} -vector space and $v_1 = (1, 1, 1), v_2 = (0, 1, 1), v_3 = (0, 0, 1) \in \mathbb{R}^3$. Show that $S = \{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 over \mathbb{R} .
- 3. How many bases exists for a \mathbb{C} -vector space \mathbb{C} ?
- 4. Consider a \mathbb{R} -vector space $P_3 = \{f(x) \in \mathbb{R}[x] : \deg f(x) \leq 3\} \cup \{0\}$ and $v_1 = 1, v_2 = 1 + x, v_3 = 1 + x^2, v_4 = 1 + x^3 \in P_3$. Show that $S = \{v_1, v_2, v_3\}$ is a basis for P_3 over \mathbb{R} .
- 5. Let \mathbb{R}^3 be a \mathbb{R} -vector space. Consider a basis $\{v_1 = (1,1,1), v_2 = (0,1,1), v_3 = (0,0,1)\}$. Let $v = (3,1,-4) \in \mathbb{R}^3$. Find the co-ordinate vector of v relative to basis $\{v_1,v_2,v_3\}$.

Practical No. 7: Dimension of vector spaces

- 1. Find the dimension of the \mathbb{R} -vector space $\mathbb{R}_{3\times 3}$.
- 2. Consider $V = \{A \in \mathbb{R}_{3\times 3} : A \text{ is an upper triangular matrix} \}$ as a \mathbb{R} -vector space. Find $\dim_{\mathbb{R}} V$.
- 3. With usual notations, find $\dim_{\mathbb{R}}(P_3)$.
- 4. Let W_1 , W_2 be subspaces of a *F*-vector space *V*. If dim(V) = 8, $dim(W_1) = 6$, $dim(W_2) = 5$, then find possible dimensions of $W_1 \cap W_2$.
- 5. Consider $V = \{A: A \text{ is a symmetric matrix in } \mathbb{R}_{2\times 2}\}$ as \mathbb{R} -vector space. Find $\dim_{\mathbb{R}}(V)$.

Practical No. 8: Linear Transformations

- 1. Let \mathbb{R}^3 , \mathbb{R}^2 be \mathbb{R} -vector spaces. Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by T(a,b,c) = (a,b) for all $(a,b,c) \in \mathbb{R}^3$. Show that T is a linear transformation.
- 2. Consider $\mathbb{R}[x]$ as a \mathbb{R} -vector space and $P_n = \{f(x) \in \mathbb{R}[x] : \deg f(x) \le n\} \cup \{0\}$ where $n \in \mathbb{N}$. Show that the differential map $T: P_n \to P_n$ defined by T(f(x)) = f'(x) is a linear transformation.
- 3. Find T(a, b, c) where $T: \mathbb{R}^3 \to \mathbb{R}$ is a linear transformation defined by T(1, 1, 1) = 3, T(0, 1, -2) = 1, T(0, 0, 1) = -2.
- 4. Let \mathbb{R}^3 be a \mathbb{R} -vector space. Is $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(a, b, c) = (3a, b, c + 1) a linear transformation?
- 5. Let \mathbb{R}^2 , \mathbb{C} be \mathbb{R} -vector spaces. Define $T: \mathbb{R}^2 \to \mathbb{C}$ by T(a,b) = a+ib, for all $(a,b) \in \mathbb{R}^2$. Show that T is a linear transformation.

Practical No. 9: Kernel and Image of linear Transformation

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by T(x,y) = (x, x + y, y). Find the range, rank, kernel and nullity of T.
- 2. Let \mathbb{R}^2 , \mathbb{R}^3 be \mathbb{R} -vector spaces. Is a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) = (x_1, x_1 x_2, x_2)$ for all $(x_1, x_2) \in \mathbb{R}^2$ one-one?
- 3. Find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose image is generated by (1,2,3) and (4,5,6).
- 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(1,0,0) = (1,0,1), T(0,1,0) = (0,0,1) and T(0,0,1) = (1,0,0). Find T(T).
- 5. Let V be a F-vector space and $\dim(V) = n$. If ImT = kerT, then show that n is even.

Practical No. 10: Singular, Non-singular and Invertible linear transformations

- 1. Show that the linear operator T on \mathbb{R}^3 defined by T(a,b,c)=(a+b+c,b+c,c) is non-singular.
- 2. Let the linear operator on \mathbb{R}^3 be defined by T(x,y,z)=(x+2y,y-z,x+2z). Is T non-singular? Justify.
- 3. Let T be the linear operator on \mathbb{R}^3 defined by T(x,y,z)=(2x,4x-y,2x+3y-z) for all $(x,y,z)\in\mathbb{R}^3$. Show that T is invertible and find a formula for T^{-1} .
- 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (z, x, y) for all $(x, y, z) \in \mathbb{R}^3$ be the linear transformation. Show that $T^3 = I$ and hence find rule of T^{-1} .
- 5. Show that the linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (-3x, -3y) for all $(x,y) \in \mathbb{R}^2$, is invertible.

Practical No. 11: Matrix of associate to a linear transformations

- 1. Let V be a n-dimensional F-vector space and $I: V \to V$ be a linear operator, then show that m(I) with respect to any basis B is the identity matrix.
- 2. Consider \mathbb{R} -vector spaces \mathbb{R}^3 and \mathbb{R}^2 . Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear operator defined by T(x, y, z) = (x y, y + z) for all $(x, y, z) \in \mathbb{R}^3$. If $B_1 = \{(1, 1, 1), (0, 1, 0), (1, 0, 0)\}$ is a basis for \mathbb{R}^3 over \mathbb{R} and $B_2 = \{(0, 1), (1, 1)\}$ is a basis for \mathbb{R}^2 over \mathbb{R} , then matrix of T with respect find to basis B_1 and B_2 .
- 3. Consider \mathbb{R} -vector space $P_3 = \{f(x) \in \mathbb{R}[x] : \deg f(x) \leq 3\} \cup \{0\}$ and a linear operator $D: P_3 \to P_3$ defined by $D(f(x)) = \frac{d}{dx}(f(x))$ for all $f(x) \in P_3$. Find the matrix of D with respect to the basis $B = \{1, x, x^2, x^3\}$.
- 4. If $m(T) = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix} \in \mathbb{R}_{3\times3}$ is the matrix of the linear operator T on \mathbb{R}^3 with respect to the standard basis, then find the matrix of T, $m_1(T)$ with respect to the basis $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}$.
- 5. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \in \mathbb{R}_{3\times 3}$. Find a linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that the matrix of T with respect to the standard basis is A.

Practical No. 12: Eigenvalues

- 1. Find the characteristic equation for the matrice $A = \begin{bmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{bmatrix}$.
- 2. Let A be a square matrix. Show that A and A^t have same eigenvalues.
- 3. If the product of two eigenvalues of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16, then find the third eigenvalue of A.

- 4. Find the eigenvalues of the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$.
- 5. Let A be a 3 \times 3 real matrix such that |A| = 6 and the tr(A) = 0. If |A + I| = 0, then compute all the eigenvalues of A.

Practical No. 13: Eigenvectors

- Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$.
- Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.
- 3. Find the eigenvalues of $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$. Find the eigen space corresponding to eigenvalue $\lambda = 1$.
- Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 6 \end{bmatrix}$.
- Find eigenvalues and eigenvectors of the matrix $=\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 2 & 3 & 4 \end{bmatrix}$.

Practical No. 14: Cayley-Hamilton theorem

- 1. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -5 \\ 3 & 2 \end{bmatrix}$.
- 2. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$. Find A^{-1} by using Cayley-Hamilton Theorem.

 3. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$, then using Cayley-Hamilton Theorem to find $A^2 A$.
- Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.
- 5. Verify Cayley-Hamilton Theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and also find A^{-1} .

Practical No. 15: Similar and Diagonalizable Matrices

- 1. Find minimum polynomial of $A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.
- Show that $A = \begin{bmatrix} 1 & -2 \\ 4 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 12 & 7 \\ -20 & -11 \end{bmatrix}$ are similar matrices.
- If A, B are diagonalizable matrices with same minimum polynomial, then show that A and B are similar.
- 4. Show t hat $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$ is a diagonalizable matrix. 5. Show that $A = \begin{bmatrix} -3 & 1 & -3 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$ is not a diagonalizable matrix.

T.Y. B.Sc. Mathematics (Elective) Semester-VI MTH-DSE-361A: Partial Differential Equations

	iours: 50 Credits: 2	
Course	To study the basics of a partial differential equation.	
Objectives	 To understand methods for solving the linear and non-linear partial differential 	
	equations.	
	 To study compatible systems of a partial differential equation. 	
	 To learn general methods of solving partial differential equations. 	
Course	After successful completion of this course, students are expected to:	
Outcomes	 find the order and degree of partial differential equation, 	
	 solve the linear and non-linear partial differential equations. 	
	 identify compatibility of a partial differential equation. 	
	 use Charpit's and Jacobi's methods to solve partial differential equations. 	
Unit	Contents	Hours
	Origin of Partial Differential Equations	
	Order and degree of partial differential equation	
	 Linear and non-linear partial differential equation 	
Unit I	 Classification of first order partial differential equations 	8
	 Origin of partial differential equations 	
	 Derivation of partial differential equation by elimination of arbitrary constants 	
	and arbitrary functions	
	Linear and Non-linear Partial Differential Equations	
	Lagrange's equations and Lagrange's method of solving $Pp + Qq = R$	
	■ Integral surface passing through a given curve	
Unit II	 Surfaces orthogonal to a given system of surfaces 	8
	 Complete integral (or complete solution), particular integral, singular integral 	
	(or singular solution) and general integral (or general solution)	
	• Geometrical interpretation of integrals of $f(x, y, z, p, q) = 0$	
	Compatible Systems	
	 Method of getting singular integral directly from the partial differential 	
	equation of first order	
Unit III	 Compatible system of first-order equations 	7
	 Condition for system of two first order partial differential equation to be 	
	compatible	
	 A particular case of Compatible System 	
	General Methods of Solving Partial Differential Equations	
	Charpit's method and examples	
Unit IV	Special type (a) $f(p,q) = 0$, (b) $f(z,p,q) = 0$, (c) $g(x,p) = f(y,q)$	7
	Examples on type (a), (b) and (c).	
	Jacobi's method and examples	
Study	M. D. Raisinghania, Ordinary and Partial Differential Equations, S. Chand	
Resources	and Company Pvt Ltd, Nineteenth Edition, 2017.	
	(Part-III: 1.1-1.12, 2.1-2.2, 2.14-2.17, 3.1-3.10, 3.14-3.22, 9.1-9.4)	
	T. Amaranath, An Elementary Course in Partial Differential Equations, Alpha	
	Science International Ltd, Second Edition, 2003.	
	■ Ian N. Sneddon, <i>Elements of Partial Differential Equations</i> , McGraw-Hill,	
	Dover Edition, 2006.	
L	,	

T.Y. B.Sc. Mathematics (Elective) Semester-VI

MTH-DSE-361B: Computational Mathematics with SageMath

(NPTEL course code: noc25-ma16)

Total Hours. 50	115. 4
Course To learn SageMath and its basic applications to mathematics.	
Objectives To study calculus of one variable with SageMath.	
■ To study integration with SageMath.	
■ To study limits, continuity and partial derivatives with SageMath.	
Course After successful completion of this course, students are expected to:	
Outcomes able to solve equations, 2d plot and 3d plot by using SageMath.	
able to use SageMath for calculus of one variable.	
able to find integration by using SageMath.	
able to calculate local maximum and local minimum by using SageMat	-h
Unit Contents	Hours
Introduction to SageMath	
 Introduction and Installation of SageMath 	
Unit I Exploring integers in SageMath	7
Solving Equations in SageMath	
2d Plotting with SageMath 3d Plotting with SageMath	
3d Plotting with SageMath	
Calculus of one variable with SageMath	
Unit II Calculus of one variable with SageMath -I Calculus of one variable with SageMath - II	8
 Calculus of one variable with SageMath - II Applications of derivatives using SageMath 	
Integration with SageMath	
Integration with SagaMath	
Unit III Improper Integral using SageMath	7
 Application of integration using SageMath 	
Advance calculus with SageMath	
Limit and Continuity of real valued functions	
Unit IV Partial Derivative with SageMath	8
 Local Maximum and Minimum 	
 Application of local maximum and local minimum 	
Study • www.sagemath.org	
Resources Mathematical Computation with Sage by Paul Zimmermann available	from
on http://www.sagemath.org	1.
A First Course in Linear Algebra by Robert Beezer available of http://linear.upg.edu/	online
http://linear.ups.edu/ Abstract Algebra: Theory and Applications by Tom Judson and R	Pohort
 Abstract Algebra: Theory and Applications by Tom Judson and Beezer (http://abstract.ups.edu/) 	XUUCII
• An Introduction to SAGE Programming: With Applications to S	
- An Induction to Additional ville Anni Anni Anni Anni Anni Anni Anni Ann	SAGE

T.Y. B.Sc. Mathematics (Elective) **Semester-VI**

MTH-DSE-362A: Practical on MTH-DSE-361A

Total Hours: 60 Credits: 2

Course	To study the basics of a partial differential equation.	
Objectives	 To understand methods for solving the linear and non-linear partial differential 	
Ü	equations.	
	 To study compatible systems of a partial differential equation. 	
C	 To learn general methods of solving partial differential equations. 	
Course Outcomes	After successful completion of this course, students are expected to:	
Outcomes	 find the order and degree of partial differential equation, solve the linear and non-linear partial differential equations. 	
	 identify compatibility of a partial differential equation. 	
	 use Charpit's and Jacobi's methods to solve partial differential equations. 	
Sr. No.	Contents	Hours
1	Origin of partial differential equations-I	4
2	Origin of partial differential equations-II	4
3	Origin of partial differential equations-III	4
4	Origin of partial differential equations-IV	4
5	Lagrange's Method-I	4
6	Lagrange's Method-II	4
7	Lagrange's Method-III	4
8	Integral Surface	4
9	Compatible systems-I	4
10	Compatible systems-II	4
11	Charpit's Method-I	4
12	Charpit's Method-II	4
13	Jacobi's Method-I	4
14	Jacobi's Method-II	4
15		4
Study Resources	 M. D. Raisinghania, Ordinary and Partial Differential Equations, S. Chand and Company Pvt Ltd, Nineteenth Edition, 2017. (Part-III: 1.1-1.12, 2.1-2.2, 2.14-2.17, 3.1-3.10, 3.14-3.22, 9.1-9.4) T. Amaranath, An Elementary Course in Partial Differential Equations, Alpha Science International Ltd, Second Edition, 2003. 	
	■ Ian N. Sneddon, <i>Elements of Partial Differential Equations</i> , McGraw-Hill, Dover Edition, 2006.	

List of Practicals

Practical No. - 1: Origin of partial differential equations-I

1. For each of the following partial differential equations, classify as linear or non-linear and find its order and degree:

a.
$$\frac{\partial^2 z}{\partial x^2} = \left(1 + \frac{\partial z}{\partial y}\right)^{\frac{1}{2}}$$
b.
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = xyz$$

b.
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = xyz$$

c.
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z + xy$$

- 2. Find a partial differential equation by eliminating a and b from $z = ax + by + a^2 + b^2$.
- 3. Eliminate arbitory constant a and b from $z = (x a)^2 + (y b)^2$.
- 4. Eliminate arbitory constant a and b from z = a(x + y) + b.
- 5. Eliminate arbitory constant a and b from z = ax + by + ab.

Practical No. - 2: Origin of partial differential equations-II

- 1. From differential equation by eliminating constant A and P from $z = Ae^{pt}sinpx$
- 2. Find a partial differential equation by eliminating a and b from $2z = (ax + y)^2 + b$.
- 3. Find the differential equation of all sphere of radius λ , having centre in xy-plane.
- 4. Eliminate a,b,and c from z = a(x + y) + b(x y)abt + c.
- 5. Find differential equation of the set of all right circular cones whoes whoes axes coincide with z-axis.

Practical No. - 3: Origin of partial differential equations-III

- 1. Form a partial differential equation by eliminating the arbitory function \emptyset from $\emptyset(x+y+z,x^2+y^2-z^2)=0$.what is the order of this partial differential equation?
- 2. Form a partial differential equation by eliminating the arbitory function f from the equation $x + y + z = f(x^2 + y^2 + z^2)$.
- 3. Eliminate the arbitrary function f and F from y = f(x at) + F(x + at).
- 4. Eliminate the arbitrary function f from $z = f(x^2 y^2)$.
- 5. Form a partial differential equation by eliminating the arbitory function f from $z = f(\frac{y}{z})$.

Practical No. - 4: Origin of partial differential equations-IV

- 1. Form a partial differential equation by eliminating the arbitory function f from $z = x^n f(\frac{y}{y})$.
- 2. Form a partial differential equation by eliminating the arbitory function ϕ from $lx + my + nz = \phi(x^2 + y^2 + z^2)$.
- 3. Form a partial differential equation by eliminating the arbitory function f from $z = e^{ax+by} f(ax by)$.
- 4. Form a partial differential equation by eliminating the arbitory function f and I from z = f(x + iy) + F(x iy).
- 5. Form a partial differential equation by eliminating the arbitory function f and g from $z = f(x^2 y) + g(x^2 + y)$

Practical No. - 5: Lagrange's Method-I

- 1. Solve ptanx + qtany = tanz.
- 2. Solve $y^2p xyq = x(z 2y)$.
- 3. Solve $p + 3q = 5z + \tan(y 3x)$.
- 4. Solve $z(z^2 + xy)(px qy) = x^4$.
- 5. Solve $xyp + y^2q = zxy 2x^2$.

Practical No. - 6: Lagrange's Method-II

- 1. Solve xzp + yzq = xy
- 2. Solve $py + qx = xyz^2(x^2 y^2)$.
- 3. Solve xp yq = xy.
- 4. Solve $z(x + y)p + z(x y)q = x^2 + y^2$.
- 5. Solve $x(y^2 + z)p y(x^2 + z)q = z(x^2 y^2)$

Practical No. - 7: Lagrange's Method-III

- 1. Solve (y + z)p + (z + x)q = x + y.
- 2. Solve $y^2(x y)p + x^2(y x)q = z(x^2 + y^2)$.
- 3. Solve $(x^2 y^2 z^2)p + 2xyq = 2xz$.
- 4. Find the general integral of xzp + yzq = xy.

5. Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$.

Practical No. - 8: Integral Surface

- 1. Find the integral surface of the linear partial differential equation $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$ which contains the straight line x+y=0, z=0
- 2. Find the integral surface of the linear partial differential equation 2y(z-3)p + (2x-z)q = y(2x-3) which pass through the circle z = 0, $x^2 + y^2 = 2x$.
- 3. Find the integral surface of the linear partial differential equation (x y)p + (y x z)q = z through the circle $z = 1, x^2 + y^2 = 1$.
- 4. Find the integral surface of the linear partial differential equation $(x^2 yz)p + (y^2 zx)q = z^2 xy$ which passes through the line x = 1, y = 0.
- 5. Find the integral surface of the linear partial differential equation 4yzp + q + 2y = 0 and passing throught $y^2 + z^2 = 1$, x + z = 2.

Practical No. - 9: Compatible systems-I

- 1. Show that $\frac{\partial z}{\partial x} = 7x + 8y 1$ and $\frac{\partial z}{\partial y} = 9x + 11y 2$ are not compatible.
- 2. Show that $\frac{\partial z}{\partial x} = 5x 7y$ and $\frac{\partial z}{\partial y} = 6x + 8y$ are not compatible.
- 3. Show that the differential equation $p = x^2 ay$, $q = y^2 ax$ are compatible and find their common
- 4. Show that $p = 1 + e^{\frac{x}{y}}$, $q = e^{\frac{x}{y}}(1 \frac{x}{y})$ are compatible and find their solution.
- 5. Show that $p = x \frac{y}{(x^2 + y^2)}$, $q = y + \frac{x}{(x^2 + y^2)}$ are compatible and find their solution.

Practical No. - 10: Compatible systems-II

- 1. Show that the equation xp = yq and z(xp + yq) = 2xy are compatible and solve them.
- 2. Show that the equation xp yq = x and $x^2p + q = xz$ are compatible and find their solution.
- 3. Show that the equation z = px + qy is compatible with any equation f(x, y, z, p, q) = 0 which is homogeneous in x, y, z.
- 4. Show that the equation f(x, y, p, q) = 0, g(x, y, p, q) = 0 are compatible if $\frac{\partial (f, g)}{\partial (x, p)} + \frac{\partial (f, g)}{\partial (y, q)} = 0$.
- 5. Solve completely the simultaneous equation z = px + qy and $2xy(p^2 + q^2) = z(yp + xq)$.

Practical No. - 11: Charpit's Method-I

- 1. Find a complete integral of $z = px + qy + p^2 + q^2$.
- 2. Find the complete integral of $q = 3p^2$.
- 3. Find the complete integral of zpq = p + q..
- 4. Find the complete integral of $p^2 y^2 q = y^2 x^2$.
- 5. Find the complete integral of $z^2(p^2z^2 + q^2) = 1$.

Practical No. - 12: Charpit's Method-II

- 1. Find the complete integral of px + qy = pq
- 2. Find the complete integral of $yzp^2 q = 0$
- 3. Find the complete integral of $q = (z + px)z^2$.
- 4. Find the complete integral of. $f(x, y, z, p, q) = (p^2 + q^2)y qz$.
- 5. Find the complete integral of $f(x, y, z, p, q) = p(1 + q^2) + (b z)q = 0$

Practical No. - 13: Jacobi's Method-I

- Find the complete integral of P₁³ + p₂² + p₃ = 1.
 Find the complete integral of x₃²p₁²p₂²p₃² + p₁²p₂² p₃² = 0.
- 3. Find the complete integral of $p_1x_1 + p_2x_2 = p_3^2$.

- 4. Find the complete integral of 2p₁x₁x₃ + 3p₂x₃² + p₂²p₃ = 0.
 5. Find the complete integral of p₁p₂p₃ = z³x₁x₂x₃.

Practical No. - 14: Jacobi's Method-II

- 1. Find the complete integral of $p_1^2 + p_2p_3 z(p_2 + p_3) = 0$.

- 2. Find the complete integral of $2x_1x_3zp_1p_3 + x_2p_2 = 0$. 3. Find the complete integral of $.p_1p_2p_3 + p_4^3x_1x_2x_3x_4^3 = 0$ 4. Find the complete integral of $.2x^2y\left(\frac{\partial u}{\partial x}\right)^2\left(\frac{\partial u}{\partial u}\right) = x^2\left(\frac{\partial u}{\partial y}\right) + 2y\left(\frac{\partial u}{\partial x}\right)^2$
- 5. Solve $p^2x + q^2y = z$ by Jacobi method.

Practical No. - 15: Monge's Method

- 1. Solve $(r-t)xy s(x^2 y^2) = qx py$.
- 2. Solve r + (a + b)s + abt = xy.
- 3. Solve $r = a^2 t$.
- 4. Solve $r + ka^2t 2as = 0$.
- 5. Solve (r s)y + (s t)x + q p = 0.

T.Y. B.Sc. Mathematics (Elective) Semester-VI MTH-DSE-362B: Practical on MTH-DSE-361B

I Otal I	iours. 60	
Course	To learn SageMath and its basic applications to mathematics.	
Objectives	To study calculus of one variable with SageMath.	
	To study integration with SageMath.	
	To study limits, continuity and partial derivatives with SageMath.	
	After successful completion of this course, students are expected to:	
Outcomes	able to solve equations, 2d plot and 3d plot by using SageMath.	
	able to use SageMath for calculus of one variable.	
	 able to find integration by using SageMath. 	
	able to calculate local maximum and local minimum by using SageMath.	T
Sr. No.	Contents	Hours
1	Basic in SageMath	4
2	Solving Equations in SageMath	4
3	2D plotting in SageMath	4
4	3D plotting in SageMath	4
5	Calculus with SageMath-I	4
6	Calculus with SageMath-II	4
7	Calculus with SageMath-III	4
8	Applications of Derivatives using SageMath	4
9	Integration with SageMath-I	4
10	Integration with SageMath-II	4
11	Improper Integral with SageMath	4
12	Applications of Integration using SageMath	4
13	Limit and Continuty using SageMath	4
14	Partial Derivatives with SegeMath	4
15	Local Maximum and Minimum with SageMath	4

T.Y. B.Sc. Mathematics (Vocational) Semester-VI MTH-VSC-361: Optimization Techniques

	Total Hours: 30 Credits: 2	
Course	 To study a graphical and simplex method to solve linear programming problem 	1.
Objectives	■ To study the initial basic feasible solution and optimum solution of transpo	ortation
	problem.	
	 To study the Hungarian method for solving adssignment problems. 	
	 To know the game and various methods for solving it. 	
Course	After successful completion of this course, students are expected to:	
Outcomes	 solve the linear programming problem by graphical method and simplex method 	od.
	 apply methods for getting IBFS and optimize it by using MODI method. 	
	• find optimum soltion of assignment problems by Hungerian method.	
	solve the game by using maximin-minimax principal, algebraic method, dom	ninance
	property and graphical method.	
Unit	Contents	Hours
		110415
	Linear Programming Problem (LPP)	
	Formation of LPP	
	Solution of LPP by graphical method	
TT *4 T	Standard and Canonical forms of LPP	_
Unit I	Simplex Algorithm Start Sta	7
	Solution of LPP by simplex method	
	 Artificial variable technique (Big M method) 	
	• Special cases in LPP: (a) Unbounded solution, (b) Alternate solution, and (c)	
	Infeasible solution	
	Transportation Problem (TP)	
	General Transportation Problem Transportation Table Methods for finding IRES.	
	 Transportation Table. Methods for finding IBFS: North –West corner rule 	
	 Matrix minima method (Least cost method) 	
	 Vogel's approximation method (VAM) 	
Unit II	 Optimality test and optimization of solution to TP by U-V method (MODI). 	8
	Special cases in TP:	
	• Alternate solution	
	Maximization TPUnbalanced TP	
	Restricted TP	
	■ Degeneracy in TP	
	Assignment Problem (AP)	
	Mathematical Formulation of Assignment problem	
	 Hungerian method for solving AP 	
	Special cases in AP:	
Unit III	Alternate solution	7
	Maximization AP	
	 Waximization AF Unbalanced AP 	
	Restricted AP	

	Game Theory	
	■ Two person-zero sum games	
	 Pure and mixed strategies, value of a game 	
Unit IV	Maxmin and Minimax principles and saddle point	8
Cint 14	■ Solution of 2 × 2 game by algebraic method and oddment method	0
	 Principle of Dominance 	
	• Game without saddle points-mixed strategies, Graphical solution of $m \times 2$	
	and $2 \times n$ games	
Study	KantiSwarup, P. K. Gupta, Man Mohan, Operations Research, S. Chand and	
Resources	Sons, Educational Publishers, New Delhi. Twelfth Edition, 2004. (Chapter	
	No 3, 4, 10, 11)	
	S. D. Sharma and K.Ramnath, Operations Research, Meerut Publication,	
	2012.	
	Prem Kumar Gupta, Operations Research, S. Chand and Company pvt Ltd.	
	New Delhi 7th Edition, 2014.	

T.Y. B.Sc. Mathematics (Vocational) Semester-VI MTH-VSC-362: Practical on MTH-VSC-361

William Voc 302. Tractical on William Voc 301

Total I	Hours: 60 Credits: 2						
Course	 To study a graphical and simplex method to solve linear programming problem 	1.					
Objectives	To study the initial basic feasible solution and optimum solution of transportation						
	problem.						
	 To study the Hungarian method for solving adssignment problems. 						
	■ To know the game and various methods for solving it.						
Course	After successful completion of this course, students are expected to:						
Outcomes	 solve the linear programming problem by graphical method and simplex method 	od.					
	 apply methods for getting IBFS and optimize it by using MODI method. 						
	• find optimum soltion of assignment problems by Hungerian method.						
	• solve the game by using maximin-minimax principal, algebraic method, dom	ninance					
	property and graphical method.	1					
Sr. No.	Contents	Hours					
1	Linear Programming Problem-I	4					
2	Linear Programming Problem-II	4					
3	Simplex Method-I	4					
4	Simplex Method-II	4					
5	Transportation Problem-I	4					
6	Transportation Problem-II	4					
7	Transportation Problem-III	4					
8	Transportation Problem-IV	4					
9	Assignment Problem-I	4					
10	Assignment Problem-II	4					
11	Assignment Problem-III	4					
12	Assignment Problem-IV	4					
13	Game Theory-I	4					
14	Game Theory-II	4					
15	Game Theory-III	4					

Practical No. 1: Solution of LPP by graphical method-I

1. Use graphical method to solve the LPP: Min $Z = x_1 + 0.5x_2$ subject to the constraints $3x_1 + 2x_2 \le 12$

$$5x_{1} \le 10$$

$$x_{1} + x_{2} \ge 8$$

$$-x_{1} + x_{2} \ge 4$$

$$x_{1}, x_{2} \ge 0$$

2. Use graphical method to solve the LPP: Max $Z = 2x_1 + 4x_2$ subject to the constraints $x_1 + 2x_2 \le 5$

$$x_1 + x_2 \le 4$$
$$x_1, x_2 \ge 0$$

Is this LPP has alternative solution? If yes, find it.

3. Using graphical method, show that the following LPP has unbounded solution. Max $Z = 6x_1 + x_2$

subject to the constraints
$$2x_1 + x_2 \ge 3$$

$$x_2 - x_1 \ge 0$$

$$x_1, x_2 \ge 0$$

4. Using graphical method show that the following LPP has infeasible solution.

$$\operatorname{Max} Z = x_1 + x_2$$

subject to the constraints $x_1 + x_2 \le 1$

$$-3x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

5. Reduce the following LPP to its standard form:

$$Max Z = x_1 + x_2 + 4x_3$$

subject to the constraints $-2x_1 + 4x_2 \le 4$

$$x_1 + 2x_2 + x_3 \ge 5$$

$$2x_1 + 3x_2 \le 2$$

$$x_1, x_2, x_3 \ge 0$$

Practical No. 2: Solution of LPP by graphical method -II

1. Use graphical method to solve the LPP: Max $Z = 2x_1 + 5x_2$

subject to the constraints
$$x_1 \le 4$$
, $x_2 \le 3$,

$$x_1 + 2x_2 \le 8$$

$$x_1, x_2 \ge 0$$

2. Use graphical method to solve the LPP: Max $Z = 4x_1 + 3x_2$

subject to the constraints $3x_1 + 4x_2 \le 24$

$$8x_1 + 6x_2 \le 48$$

$$x_1 \leq 5$$

$$x_2 \le 6$$

$$x_1, x_2 \ge 0$$

Find alternate optimum solution, if it exists.

3. Using graphical method, to solve the LPP: Max $Z = 80x_1 + 120x_2$

subject to the constraints $x_1 + x_2 \le 9$

$$x_1 \ge 2$$

$$x_2 \ge 3$$

$$20x_1 + 50x_2 \le 360$$

$$x_1, x_2 \ge 0$$

4. Using graphical method, to solve the LPP: Min $Z = 20x_1 + 40x_2$

subject to the constraints $36x_1 + 6x_2 \ge 108$

$$3x_1 + 12x_2 \ge 36$$

$$20x_1 + 10x_2 \ge 100$$

$$x_1, x_2 \ge 0$$

5. A firm manufactures two types of products A and B and sale them at a profit of Rs. 2/- on type A and Rs. 3/- on type B. Each product is produced on two machines M_1 and M_2 . Type A requires 1 minute of processing time on machine M_1 and 2 minutes of processing time on machine M_2 . Type B requires 1 minute of processing time on machine M_1 and 1 minutes of processing time on machine M_2 . Machine M_1 is available for not more than 6 hours 40 minutes while machine M_2 is available for 10 hours during any working day. Formulate given problem in LPP and solove it for maximization.

Practical No. 3: Simplex Method-I

1. Use simplex method to solve the LPP: Max $Z = 4x_1 + 10x_2$ subject to the constraints $2x_1 + x_2 \le 50$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$

$$x_1 \ge 0, x_2 \ge 0$$

2. Using Big-M method show that the following LPP does not possess any feasible solution. Max Z = $3x_1 + 2x_2$

subject to the constraints $2x_1 + x_2 \le 2$

$$3x_1 + 4x_2 \ge 12$$

$$x_1 \ge 0, x_2 \ge 0$$

3. Using Big-M method show that the following LPP has alternative solution.

$$\operatorname{Max} Z = 6x_1 + 4x_2$$

subject to the constraints $2x_1 + 3x_2 \le 30$

$$3x_1 + 2x_2 \le 24$$

$$x_1 + 2x_2 = 2$$
$$x_1 + x_2 \ge 3$$

$$x_1 \ge 0, x_2 \ge 0$$

4. Using simplex method solve the LPP: Max $Z = 3x_1 + 4x_2$ subject to the constraints $x_1 + x_2 \le 4$

$$2x_1 + x_2 \le 5$$

$$x_1 \ge 0, x_2 \ge 0$$

5. Use simplex method to solve the LPP: Max $Z = 3x_1 + 2x_2$

subject to the constraints $x_1 + x_2 \le 4$

$$x_1 - x_2 \le 2$$

$$x_1 \ge 0, x_2 \ge 0$$

Practical No. 4: Simplex Method-II

1. Use simplex method to solve the LPP: Max $Z = x_1 + x_2$ subject to the constraints $x_1 + 2x_2 \le 2000$

$$x_1 + x_2 \le 1500$$

$$x_1 \le 600$$

$$x_1, x_2 \ge 0$$

2. Use simplex method to solve the LPP: Max $Z = 800x_1 + 600x_2 + 300x_3$ subject to the constraints $10x_1 + 4x_2 + 5x_3 \le 2000$

$$2x_1 + 5x_2 + 4x_3 \le 1009$$

$$x_1, x_2, x_3 \ge 0$$

3. Solve the LPP by Big-M method: Max $Z = 3x_1 - x_2$

subject to the constraints $2x_1 + x_2 \ge 2$

$$x_1 + 3x_2 \le 3$$

$$x_2 \leq 4$$

$$x_1, x_2 \ge 0$$

4. Using simplex method solve the LPP: Max $Z = 6x_1 + 9x_2$

subject to the constraints $2x_1 + 2x_2 \le 24$

$$x_1 + 5x_2 \le 44$$

$$6x_1 + 2x_2 \le 60$$

$$x_1, x_2 \ge 0$$

5. Use simplex method to solve the LPP: Max $Z = 3x_1 + 2x_2$

subject to the constraints $-x_1 + 2x_2 \le 4$

$$3x_1 + 2x_2 \le 14$$

$$x_1 - x_2 \le 3$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \ge 0$$

Find the alternate solution, if it exists.

Practical No. 5: Transportation Problem (TP)-I

1. Obtain IBFS of TP by using North-West Corner rule

	D	E	F	G	Availability
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
Requirements	200	225	275	250	•

2. Obtain IBFS of TP by using Matrix Minima Method

	D_1	D_2	D_3	D_4	Capacity
O_1	1	2	3	4	6
O_2	4	3	2	0	8
O_3	0	2	2	1	10
Demand	4	6	8	6	_

3. Obtain IBFS of TP by using Vogel's Approximation Method

	D	E	F	G	Availability
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
Demand	200	225	275	250	•

4. Convert the following unbalanced TP into balanced TP.

		I	II	III	IV	V	Supply
Sources	A	4	3	26	38	30	160
	В	3	2	34	34	198	280
	C	3	3	24	28	30	240
	Demand	1	1	200	120	240	

5. Obtain IBFS by VAM and solve the transportation problem for minimum cost.

	D_1	D_2	D_3	Supply
S_1	2	7	4	5
S_2	3	3	1	8
S_3	5	4	7	7
S_2 S_3 S_4	1	6	2	14
Demand	7	9	18	

Practical No. 6: Transportation Problem (TP)-II

1. Find the starting solution to the following TP by using North-West Corner rule

	Α	В	C	D	Supply
a	15	51	42	33	23
b	30	42	26	81	44
c	90	40	66	60	33
	23	31	16	30	<u>-</u> '

Demmand

2. Find the starting solution to the following TP by the matrix minima method

	Α	В	C	D	Supply 23
a	15	51	42	33	23
b	30	42	26	81	44
c	90	40	66	60	33
	23	31	16	30	<u>-</u>

Demmand

	the reme wing in of the veget a depresimental in								
	A	В	C	D	Supply				
a	15	51	42	33	23				
b	30	42	26	81	44				
c	90	40	66	60	33				
	23	31	16	30	='				

4. Solve the following TP for minimum cost

Demmand

				_
I	50	30	220	1
II	90	45	170	3
III	250	200	50	4
Demand	4	2	2	-

5. Solve the following TP which has initial solution

	A	1	В	}	C	2	Γ)	Supply
0		5		10		4		5	10
a					10	,			10
h		6		8		7		2	25
b	20					,	5		23
		4		2		5		7	20
c	5		10		5	,			20
Demand	25	5	10)	1:	5	5		- '

Practical No. 7: Transportation Problem (TP)-III

1. Solve the following transportation problem for maximum profit

	Ī	II	III	IV	Supply
Α	40	25	22	33	Supply 100
В	44	35	30	30	30
C	38	38	28	30	70
	40	20	60	30	

Demand

2. Obtain an optimal basic feasible solution of the following degeneracy problem

	W_1	W_2	W_3	Available
F_1	7	3	4	2
$\overline{F_2}$	2	1	3	3
$\overline{F_3}$	3	4	6	5
Demand	4	1	5	_

3. Solve the following transportation problem

	A	В	C	D	E	Supply
P	4	1	3	4	4	60
Q	2	3	2	2	3	35
R	3	5	2	4	4	40
Demand	22	45	20	18	30	

4. Obtain the initial basic feasible solution of the following example by north-west corner method as well as by VAM method.

	I	II	III	IV	Supply
A	7	3	5	5	Supply 34 15
В	5	5	7	6	15
C	8	6	6	5	12
D	6	1	6	4	19
	21	25	17	17	•

Demand

5. Find initial basic feasible solution for following transportation problem by using least cost method

			, F		
	D_1	D_2	D_3	D_4	Supply
O_1	3	4	6	3	30
O_2	3	5	7	10	50
O_3	2	6	5	7	70
Demand	22	41	44	43	_

Practical No. 8: Transportation Problem (TP)-IV

1. Find optimum solution to the following degenerate TP.

	A	В	C	D	Supply
\boldsymbol{x}	10	22	10	20	8
y	15	20	12	8	13
Z	20	12	10	15	11
Demand	5	11	8	8	-

2. Solve the following TP for optimal solution.

	A	В	C	D	E	Supply
o_1	8	8	10	6	10	17
o_2	0	8	6	12	14	25
o_3	12	10	8	14	12	24
Demand	10	11	6	16	23	_

3. Solve the following TP which has initial solution

	d_1	d_2	d_3	d_4	Supply
	15	51	42	33	22
o_1				23	23
	30	42	26	81	144
o_2	23	5	16		1 44
_	90	40	66	60	22
o_3		26		7	33
Demand	23	31	16	30	_

4. Solve the following transportation problem

	A	В	C	Supply 25
P	3	2	4	
Q	8	9	11	50 50 100
R	6	5	9	50
S	9	13	13	100
Demand	50	75	50	=

5. Find the alternate solution of the following TP, if it exists

	d_1		d_{i}	2	d_3		d_{λ}	1	a	5	Supply
0		8		8		10		6		10	17
o_1			1				16				1 /
		0		8		6		12		14	25
02	10		10		5		'-			,	23
		12		10		8		14		12	24
03					1		'-		23	,	<i>2</i> 4
Demand	10		1.	1	6		16	5	23		•

Practical No. 9: Assignment Problem (AP)-I

1. Solve following AP.

	I	II	III	IV
A	2	3	4	5
В	4	5	6	7
C	7	8	9	8
D	3	5	8	4

Is there exist alternative solution? If Yes, Find it.

2. A departmental head has four subordinates and four tasks to be performed. The subordinates differs in efficiency and the tasks differ in their intrinsic difficulty. His estimate, of the time each man would take to perform each task, is given in the matrix below:

	Men							
Tasks	E	F	G	Н				
A	18	26	17	11				
В	13	28	14	26				
C	38	19	18	15				
D	19	26	24	10				

How should the tasks be allocated, one to a man, so as to minimize total manhours?

3. Solve the following assignment problem for maximum profit.

	1	2	3	4
A	16	10	14	11
В	14	11	15	15
C	15	15	13	12
D	13	12	14	15

4. The following is the cost matrix of assigning 4 clerks to 4 key punching jobs. Find the optimal assignment if clerk I cannot be assigned to job 1:

	Job				
Clerk	I	II	III	IV	
a		5	2	0	
b	4	7	5	6	
c	5	8	4	3	
d	3	6	6	2	

What is the minimum total cost?

5. Convert the following unbalanced AP into balanced AP and solve it for minimization.

	Α	В	C
W	9	26	15
X Y	13	27	6
Y	35	20	15
Z	18	30	20

Practical No. 10: Assignment Problem (AP)-II

1. Use Hungarian method, to solve the following problem for minimum cost.

		Men		
		а	b	С
Tasks	\boldsymbol{A}	8	7	6
	B	5	7	8
	С	6	8	7

2. A marketing manager has 5 salesmen and 5 sales district, considering the capacity of sales man and nature of district. The manager estimates the sales per month (in 100 Rs.) for each salesman in each district would be as follows.

			Sale	District		
		а	b	С	d	e
	\boldsymbol{x}	32	38	40	28	40
Salesman	y	40	24	28	21	36

\boldsymbol{z}	41	27	33	30	37
w	22	38	41	36	36
t	29	33	40	35	39

Find optimum solution to the above AP.

3. Solve the following assignment problem for minimum cost.

	а	b	С	d
\boldsymbol{A}	10	12	19	11
B	5	10	7	8
C	12	14	13	11
D	8	15	11	9

4. Solve the following assignment problem for minimum cost.

	а	b	С	d
Α	15	13	14	17
В	11	12	15	13
\mathcal{C}	13	12	10	11
D	15	17	14	16

5. Solve the following assignment problem for minimum cost.

	Α	В	С	D
Ι	8	26	17	11
II	13	28	4	26
III	38	19	18	15
IV	19	26	24	16

Practical No. 11: Assignment Problem (AP)-III

1. Solve the following assignment problem for minimum cost

	I	II	III	IV	V
A	1	3	2	3	6
B C	2	4	3	1	5
C	5	6	3	4	6
D	3	1	4	2	2
E	1	5	6	5	4

2. A company has four territories and four salesmen available for the assignment. The cells(rupees in lacks) for each salesmen to be assign each territory is given below

Territories Ш II 70 56 В 60 50 40 30 salesmen C 50 40 60 30 D 40 24

Find the optimum

assignment

schedule

maximizes

that

total profit.

3. The owner of a small machine shop has four machinists available to assign for jobs for a day. Five jobs are offered with expected profit (in rupees) on each job as follows

Jobs В \mathbf{C} D E 78 50 101 82 1 62 2 71 84 73 59 61 machinists 3 87 92 111 71 81 48 64 80

Find the assignment of machinists to the jobs that will result in a maximum profit.

4. Solve the following assignment problem to minimize the total design time

Design time project

Originers

	Α	В	C	D
I	12	10	10	8
II	14	8	15	11
III	6	10	16	4
IV	8	10	9	7

5. There are five pilots and five flights given in the table

Flight No.

A B Pilot C D E

				-	
	I	II	III	IV	V
	8	2	X	5	4
	10	9	2	8	4
	5	4	9	6	X
)	3	6	2	8	7
	5	6	10	4	3
		1.1			

Find the optimal solution of the assignment problem.

Practical No. 12: Assignment Problem (AP)-IV

1. Solve the following assignment problem to minimization

	Α	В	C	D
I	1	4	6	3
II	9	7	10	9
III	4	5	11	7
IV	8	7	8	5

2. A Company has four machines on which to do three jobs. Each job can be assigne to one and only one machine. The cost of each job on each machine is given in the following table

D

32

19

22

Determine the optimum assignment and minimum cost.

3. Solve the following assignment problem to find maximum total expected sale.

	I	II	$\Pi\Pi$	IV
A	42	35	28	21
В	30	25	20	15
C	30	25	20	15
D	24	20	16	12

4. Solve the following assignment problem

	I	II	III	IV	V	
A	4	6	10	5	6	
В	7	4		5	4	
C		6	9	6	2	
D	9	3	7	2	3	

5. Five operators have to be assigned to five machines. Operator A cannot operate machine III and operator C cannot be operate machine IV. The assignment cost are as below.

	<u> </u>	II	III	IV	V	
A	5	5	-	2	6	
В	7	4	2	3	4	

C	9	3	5		3
D	7	2	6	7	2
E	6	5	7	9	1

Find the optimum assignment.

Practical No. 13: Game Theory-I

1. Find the best strategy of each player and the value of game.

1 0		Player B					
	9	3	1	8	0		
Dlayer A	6	5	4	6	7		
Player A	2	4	3	3	8		
	5	6	2	2	1		

- 2. A and B play a game in which each has three coins 5p ,10p and 20p each player selects the point without the knowledge of coin, if the sum of coin is an odd amount, A wins B's coin and if the sum of coin is even then B wins A's coin. Find the best strategy for player A &B and the value of game.
- 3. Find the ranges of values of P and Q which will render the entry (2, 2)a saddle point for the game

4. Solve the following 2 X 4 game by graphical method.

5. Solve the following game by graphical method.

Practical No. 14: Game Theory-II

1. Solve the following game by algebraic method

2. Solve the following game by graphical method

3. Solve the following game

		I	Player I	3	
	-2	0	0	5	3
Player A	3	2	1	2	2
	-4	-3	0	-2	6
	5	3	-4	2	-6

4. Solve the following game by graphical method.

	Player B				
	1	-3			
	3	5			
Player A	-1	6			
	4	1			
	2	2			
	-5	0			

5. Solve the following game.

		В		
-2	0	0	5	3
3	2	1	2	2
-4	-3	0	-2	6
5	3	-4	2	-6
		3 2	3 2 1	3 2 1 2

Practical No. 15: Game Theory-III

1. Solve the following game by arithmetic method

Player A
$$\begin{array}{c|c} & \text{Player B} \\ \hline 5 & -1 \\ 0 & 12 \\ \end{array}$$

2. Solve the following game by using dominance principle

4. For the following game

Find a) saddle point, if exists, b) optimal strategy and c) the value of the game.

5. Using principle of dominance, for the following game

	Player B					
	8	10	9	14		
Player A	10	11	8	12		
	13	12	14	13		

Find a) best strategy for Player A b) best strategy for Player B c) the value of game.

Skills acquired and Job opportunity for the Mathematics students

Skills acquired:

The curriculum is designed to inculcate basic principles of mathematical methods and analysis to apply in various fields of scientific research. The curriculum contains a wide variety of mathematical topics like topology, linear algebra, differential equations, numerical analysis, transformations, operations research, fluid mechanics, functional analysis and mathematical methods. Further the following skills are developed on successful completion:

- critical thinking
- problem solving
- analytical thinking
- quantitative reasoning
- ability to manipulate precise and intricate ideas
- construct logical arguments and expose illogical arguments
- time management
- teamwork
- independence

Job opportunity:

The designed curriculum offers job opportunities like:

- mathematics teacher
- Scientist
- Programmer
- Software professional
- Banker
- Accountant.
- Actuary
- Data analyst
- Engineer
- Investment manager
- Research leading to Ph. D. degree
- Self entrepreneurship