K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे
मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी - 'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date:- 01/08/2023

NOTIFICATION

Sub :- CBCS Syllabi of B. Sc. in Microbiology (Sem. I & II)

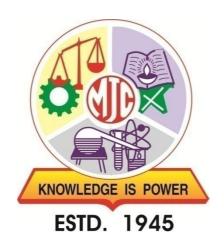
Ref. :- Decision of the Academic Council at its meeting held on 26/07/2023.

The Syllabi of B. Sc. in Microbiology (First and Second Semesters) as per **NATIONAL EDUCATION POLICY - 2020** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2023-24.

Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies

To:


- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

Khandesh College Education Society's

Moolji Jaitha College, Jalgaon

An "Autonomous College"

Affiliated to
Kavayitri Bahinabai Chaudhari
North Maharashtra University, Jalgaon 425001

STRUCTURE AND SYLLABUS

B.Sc. Honors/Honors with Research

(F.Y.B.Sc. Microbiology)

Under Choice Based Credit System (CBCS) and as per NEP-2020 Guidelines

[w.e.f. AcademicYear:2023-24]

Preface

Skilled human resource is a prerequisite in higher education, and it is to be acquired through thorough knowledge of theoretical concepts and hands-on laboratory methods of the subject. The Moolji Jaitha College (Autonomous) has adopted a department-specific model as per the guidelines of UGC, NEP-2020 and the Government of Maharashtra. The Board of Studies in Microbiology and Biotechnology of the college has prepared the syllabus for the first-year undergraduate of Microbiology. The syllabus cultivates theoretical and practical know-how of different fields of Microbiology. The contents of the syllabus have been prepared to accommodate the fundamental aspects of various disciplines of Microbiology and to build the foundation for various applied sectors of Microbiology. Besides this, in the first year, the students will be enlightened with the skill related to microbial identification and testing, which will enhance students' employability.

The overall curriculum of three / four-year covers general microbiology, biomolecules and microbial metabolism, molecular biology and microbial genetics, medical microbiology and immunology, industrial and applied microbiology, environmental microbiology, and also covers various biotechniques. Furthermore, the syllabus is structured to cater to Microbiology's present and future needs in the research field, Industrial Sector, Environmental Sector, Entrepreneurship etc., emphasizing imparting hands-on skills. Hence, the curriculum is endowed with more experiments that shall run hand-in-hand with theory. The detailed syllabus of each paper is appended with a list of suggested readings.

Program Outcomes (PO) for B.Sc. Program:

Program outcomes associated with a B.Sc. degree are as follows:

- 1. Graduates should have a comprehensive knowledge and understanding of the fundamental principles, theories, and concepts in their chosen field of study.
- 2. Graduates should possess the necessary technical skills and competencies related to their discipline, including laboratory techniques and data analysis.
- 3. Graduates should be able to identify, analyze, and solve complex problems using logical and critical thinking skills. They should be able to apply scientific methods and principles to investigate and find solutions.
- 4. Graduates should be proficient in effectively communicating scientific information, both orally and in writing.
- 5. Graduates should have a basic foundation in research methods and be capable of designing and conducting scientific investigations.
- 6. Graduates should be able to work effectively as part of a team, demonstrating the ability to collaborate with others, respect diverse perspectives, and contribute to group projects.
- 7. Graduates should recognize the importance of ongoing learning and professional development. They should be equipped with the skills and motivation to engage in continuous learning, adapt to new technologies and advancements in their field, and stay updated with current research.

Program Specific Outcome PSO (B.Sc. Microiology):

After completion of this course, students are expected to learn/understand the:

1	Isolation, identification and characterization of various microbes from diverse habitats.
2	Impact of various groups of microbes on atmosphere, plant, human and animal health.
3	Principle and applications of various bio-analytical tools and techniques
4	Structure, properties, pathways and applications of biomolecules in various fields
5	Biochemical mechanisms, regulation and application of enzymes in various sectors
6	Applications of microbes in various fields such as agriculture, industry, medical etc.

Leve		Major (Cor	e) Subjects	Minor	GE/	VSC,	AEC,	CC, FP,	Cumulative	Degree/
1	Sem	Mandatory (DSC)	Elective (DSE)	Subjects (MIN)	OE OE	SEC (VSEC)	VEC, IKS	CEP, OJT/Int, RP	Credits/Sem	Cumulative Cr.
	I	DSC-1 (2T) DSC-2 (2T) DSC-3 (2P)	_	MIN-1 (2T) MIN-2 (2P)	OE-1 (2T)	SEC-1 (2T) SEC-2 (1P)	AEC-1 (2T) (ENG) VEC-1 (2T) (ES) IKS (1T)	CC-1 (2)	22	- UG
4.5	п	DSC-4 (2T) DSC-5 (2T) DSC-6 (2P)		MIN-3 (2T) MIN-4 (2P)	OE-2 (2T)	SEC-3 (2T) SEC-4 (1P)	AEC-2 (2T) (ENG) VEC-2 (2T) (CI) IKS (1T)	CC-2 (2)	22	Certificate 44
	Cum. Cr	12		8	4	6	4+4+2	4	44	
Exit o	ption: Awar	d of UG Certific	ate in Major	with 44 credits an		tional 4 credits on	core NSQF cours	se/ Internship	OR Continue v	vith Major and
	Ш	DSC-7 (2T) DSC-8 (2T) DSC-9 (2P) DSC-10 (2P)		MIN-5 (2T) MIN-6 (2P)	OE-3 (2T) OE-4 (2P)		AEC-3 (2T) (MIL)	CC-3 (2) CEP (2)	22	UG
5.0	IV	DSC-11 (2T) DSC-12 (2T) DSC-13 (2P) DSC-14 (2P)		MIN-7 (2T) MIN-8 (2P)	OE- 5 (2T) OE-6 (2P)		AEC-4 (2T) (MIL)	CC-4 (2) FP (2)	22	Diploma 88
	Cum. Cr	28		16	10	6	8+4+2	8+2+2	88	
	V	DSC-15 (2T) DSC-16 (2T) DSC-17 (2T) DSC-18 (2P) DSC-19 (2P)	DSE-1 (2T) A/B DSE-2 (2P) A/B	MIN-9 (2T/P)		VSC-1 (2T) VSC-2 (2P)		OJT/Int(2)	22	HC.
5.5	VI	DSC-20 (2T) DSC-21 (2T) DSC-21 (2T) DSC-22 (2T) DSC-23 (2P) DSC-24 (2P)	DSE-3 (2T) A/B DSE-4 (2P) A/B	MIN-10(2T/P)	_	VSC-3 (2T) VSC-4 (2P)		OJT/Int(2)	22	UG Degree 132
	Cum. Cr.	48	08	20	10	8+6	8+4+2	8+2+2+4	132	
		Exit op	tion: Award o	of UG Degree in M	lajor with	132 credits OR	Continue with I	Major and Mi	nor	
	VII	DSC-25 (4T) DSC-26 (4T) DSC-28 (4T) DSC-27 (2P)	DSE-5 (2T) A/B DSE-6(2P) A/B	RM (4T)	_				22	UG Honors Degree 176
6.0	VIII	DSC-29 (4T) DSC-30 (4T) DSC-32 (4T) DSC-31 (2P)	DSE-7 (2T) A/B DSE-8(2P) A/B		_			OJT/Int (4)	22	
	Cum. Cr.	76	16	20+4	10	8+6	8+4+2	8+2+2+8	176	
			Four	Year UG Honors	Degree in	Major and Mir	or with 176 cred	lits		
	VII	DSC-25 (4T) DSC-26 (4T) DSC-27 (2P)	DSE-5 (2T) A/B DSE-6 (2P) A/B	RM (4T)				RP (4)	22	UG Honors wi Research Degree 176
6.0	VIII	DSC-29 (4T) DSC-30 (4T) DSC-31 (2P)	DSE-7 (2T) A/B DSE-8 (2P) A/B					RP (8)	22	
	Cum. Cr.	68	16	20+4	10	8+6	8+4+2	8+2+2+8+12	176	
	Cum. Cr.	68	16	20+4	10	8+6	8+4+2	8+2+2+8+12	176	

Note: 2 credit course on Major Specific IKS shall be included under Major subjet in FY or SY UG program DSC: Department-Specific Core course, DSE: Department-Specific elective, GE/OE: Generic/ Open elective, SEC: Skill Enhancement Course; AEC: Ability Enhancement Course; VEC: Value Education Courses; ENG: English; ES: Environmental studies; CI: Constitution of India; IKS: Indian Knowledge System; CC: Co-curricular course; T: Theory; P: Practical; VSEC: Vocational and Skill Enhancement Courses; FP: Field project; MIL: Modern Indian Language

Four Year UG Honours with Research Degree in Major and Minor with 176 credits

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree

depending upon the number of credits secured;

Levels	Qualification Title	Credit Requirements		Semester	Year
		Minimum	Maximum		
4.5	UG Certificate	40	44	2	1
5.0	UG Diploma	80	88	4	2
5.5	Three Year Bachelor's Degree	120	132	6	3
6.0	Bachelor's Degree- Honours Or	160	176	8	4
	Bachelor's Degree- Honours with Research				

F. Y. B. Sc. Microbiology Course Structure

Semester	Course Module	Credit	Hours/ week	TH/ PR	Code	Title
	DSC	2	2	TH	MIB-DSC-111	Fundamentals of Microbiology with IKS
	DSC	2	2	TH	MIB-DSC-112	Microscopy and Basic Bacteriology
	DSC	2	4	PR	MIB-DSC-113	Practical course on Basic Microbiology
	MIN	2	2	TH	MIB-MIN-111	Basic Microbiology
	MIN	2	4	PR	MIB-MIN-112	Practical course on Basic Microbiology
	OE/GE	2	2	TH	MIB-OE-111	Health and Human Microbiome
	SEC	2	2	TH	MIB-SEC-111	Techniques of Microbial Identification
	SEC	1	2	PR	MIB-SEC-112	Practical course on Microbial Identification
	AEC	2	2	TH	ENGS-AEC-111	English
I	VEC	2	2	TH	ES -VEC-111	Environmental studies
1	IKS	1	1	TH	IKS-111	Indian knowledge system
		_	2		NCC-CC-111	NCC
					NSS-CC-111	NSS
					SPT-CC-111	Sports
	CC	2		CC	CUL-CC-111	Cultural
	DSC	2	2	TH	MIB-DSC-121	Microbial ecology and cytology
	DSC	2	2	TH	MIB-DSC-122	Microbial techniques
	DSC	2	4	PR	MIB-DSC-123	Practical course on Microbial techniques
	MIN	2	2	TH	MIB-MIN-121	Microbes and their control
	MIN	2	4	PR	MIB-MIN-122	Practical course on Microbial techniques
	OE/GE	2	2	TH	MIB-OE-121	Microbial diseases and control
	SEC	2	2	TH	MIB-SEC-121	Methods in microbial testing
	SEC	1	2	PR	MIB-SEC-122	Practical course on Microbial testing
	AEC	2	2	TH	ENGS-AEC-121	English
II	VEC	2	2	TH	CI-VEC-121	Constitution of India
	IKS	1	1	TH	IKS-121	Indian knowledge system
			2		NCC-CC-121	NCC
					NSS-CC-121	NSS
					SPT-CC-121	Sports
	CC	2		CC	CUL-CC-121	Cultural

Examination Pattern

Theory Question Paper Pattern:

- 30 (External) +20 (Internal) for 2 credits
 - o External examination will be of 1½ hours duration
 - There shall be 3 questions Q1 carrying 6 marks and Q2, Q3 carrying 12 marks each. while the tentative pattern of question papers shall be as follows;
 - o Q1 Attempt any 2 out of 3 sub-questions; each 3 marks
 - o Q 2 and Q3 Attempt any 3 out of 4 sub-question; each 4 marks.

Rules of Continuous Internal Evaluation:

The Continuous Internal Evaluation for theory papers shall consist of two methods:

- **1. Continuous & Comprehensive Evaluation (CCE):** CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:
 - i. Individual Assignments
 - ii. Seminars/Classroom Presentations/Quizzes
 - iii. Group Discussions/Class Discussion/Group Assignments
 - iv. Case studies/Case lets
 - v. Participatory & Industry-Integrated Learning/Field visits
 - vi. Practical activities/Problem Solving Exercises
 - vii. Participation in Seminars/Academic Events/Symposia, etc.
 - viii. Mini Projects/Capstone Projects
 - ix. Book review/Article review/Article preparation
 - x. Any other academic activity
 - xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that three units of the syllabus are mapped to the CCEs.
- **2. Internal Assessment Tests (IAT):** IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher is at liberty to decide which units are to be assessed using CCEs and which unit is to be assessed on the basis of IAT.

The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations.

The subject teachers are required to communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Practical Examination Credit 2: Pattern (30+20)

External Practical Examination (30 marks):

- Practical examination shall be conducted by the respective department at the end of the semester.
- Practical examination will be of 3 hours duration and shall be conducted as per schedule.
- Practical examination shall be conducted for 2 consecutive days for 2 hr/ day where incubation condition is required.
- There shall be 05 marks for journal and viva-voce. Certified journal is compulsory to appear for practical examination.

• External practical examination of SEC will be of 25 marks and there will be no internal exam for SEC practical.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by department as per schedule given.
- For internal practical examination student must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and the Head of the department.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities assigned by the faculty during regular practicals. For details refer internal theory examination guidelines.
- Finally 40 (10+30) marks performance of student will be converted into 20 marks.

F.Y.B.Sc. (Microbiology) Semester I

FYBSc (Microbiology) Semester I

MIB-DSC-111: Fundamentals of Microbiology with IKS

Total Hours: 30 Credits: 2

Course objectives • To understand the relationship of microbiology in the Indian knowledge system as modern history • To make the student aware of the scope of microbiology • To acquaint concepts in microbial diversity • To understand the various systems used for the classification of microorganisms Course outcomes After successful completion of this course, students are expected to: • Aware of historical developments and contributions of various pioneers • How the subject emerges as a new branch of biology and its current scope • Know the diversity of microorganisms and differences among various microbes • Understand the rules applied for microbial taxonomy Hou History and IKS in Microbiology
To acquaint concepts in microbial diversity To understand the various systems used for the classification of microorganisms Course outcomes After successful completion of this course, students are expected to: Aware of historical developments and contributions of various pioneers How the subject emerges as a new branch of biology and its current scope Know the diversity of microorganisms and differences among various microbes Understand the rules applied for microbial taxonomy Unit Topic Particular Hou
To understand the various systems used for the classification of microorganisms After successful completion of this course, students are expected to:
Course After successful completion of this course, students are expected to: • Aware of historical developments and contributions of various pioneers • How the subject emerges as a new branch of biology and its current scope • Know the diversity of microorganisms and differences among various microbes • Understand the rules applied for microbial taxonomy Unit Topic Particular Hou
• Aware of historical developments and contributions of various pioneers • How the subject emerges as a new branch of biology and its current scope • Know the diversity of microorganisms and differences among various microbes • Understand the rules applied for microbial taxonomy Unit Topic Particular Hou
How the subject emerges as a new branch of biology and its current scope Know the diversity of microorganisms and differences among various microbes Understand the rules applied for microbial taxonomy Hou
 Know the diversity of microorganisms and differences among various microbes Understand the rules applied for microbial taxonomy Unit Topic Particular Hou
Understand the rules applied for microbial taxonomy Unit Topic Particular Hou
Unit Topic Particular Hou
-
History and IKS in Microbiology
 Indian Knowledge System in Microbiology
Microbiology in Vedas
 Vedic scientific terms for microorganisms
 Ancient Indian bacteriology
Traditional Indian fermented food
Contributions of researchers from Indian origin viz. Ananda Mohan
Unit I Chakraborty, Subba Rao, Natteri Veeraraghavan, Khem Shahani, R.
Ananthanarayan etc.
History of microbiology
 Concept of Spontaneous generation (abiogenesis) and biogenesis.
 The germ theory of Fermentation and Disease
 Historical perspective related to Microscopy, Microorganism,
Virology, Immunology.
Scope of Microbiology
• Introduction to various branches of microbiology: Bacteriology, virology,
phycology, mycology, protozoology
Unit II • Scope of microbiology in Soil, Agricultural, Geo, Environmental, Food & 7
Dairy, Industrial, Pharmaceutical, Medical Microbiology, Immunology, Molecular biology, Bioinformatics and Nano-technology, Biowarfare etc.
Research institutes/ industries in India related to Microbiology: NIV,
MTCC, ARI, NEERI, Serum Institute, Hi Media etc.
Microbial Diversity
Concept of a prokaryotic and eukaryotic cell
Concept of microbial diversity and diversity index
General characteristics, Morphological features, and significance:
 Viruses, Virion and Prions
Unit III o Bacteria (Eubacteria, Rickettsia, Mycoplasma, Actinomycetes) and 8
Cyanobacteria
o Archae
o Algae
o Fungi
o Protozoa

	Microbial Taxonomy	
	Whitakers' Five Kingdom system	
	Carl Woese's three Domain system	
Unit IV	Binomial Nomenclature and basic rules	7
	Methods in Microbial Taxonomy: Cultural, Biochemical and Molecular Characteristics, Numerical taxonomy, Chemotaxonomy, Phylogenetic	
	taxonomy, polyphasic approach	

- Tortora, G. J., Funke, B. R., & Case, C. L. (2008). Microbiology: An Introduction (9thed.). Pearson Education, New Delhi.
- Talaro, K. & Chess, B. (2012). Foundations in Microbiology (8th ed.). The McGraw-Hill Companies, Inc., New York.
- Tortora, Funke, and Case (2010) Microbiology, 10th edition, Brenjamin Cummings Inc., California.
- Patil U. K., Kulkarni, J. S., Chaudhari, A. B., & Chincholkar, S. B. (2016). Foundations in Microbiology, 9th edition, Nirali Prakashan, Pune
- Frobisher, M. Hinsdill, Crabtree, and Goodheart, (1974). Fundamentals of Microbiology, 9th edition, WB Saunder's Co., USA.
- Dubey, R. C., & Maheshwari, D. K. (2005). Text Book of Microbiology, S Chand and Co, New Delhi
- Kuhad, U., Goel, G., Maurya, P. K., & Kuhad, R. C. (2021). Sukshmjeevanu in Vedas: The Forgotten Past of Microbiology in Indian Vedic Knowledge. Indian Journal of Microbiology, 61, 108-110.
- Sircar, N. N. (1991). Ancient Indian Bacteriology. Ancient Science of Life, 10(3), 180.
- Frend, C. (2006). Microbiology in the Veda. Vedic sciences, 8(4), 27-34.

FYBSc (Microbiology) Semester I

MIB-DSC-112: Microscopy and Basic Bacteriology

Total Hours: 30 Credits: 2

Course objectives	 To understand the basic knowledge of microscopy To make aware the students concerning stain and staining techniques To know concepts related to the growth and reproduction of bacteria To understand the physical and chemical parameters for bacterial growth 	ı
Course outcomes	 After successful completion of this course, students are expected to: Understand the theory in microscopy and their handling techniques Differentiate microorganisms based on staining Know the concepts of growth and quantitative measurement of bacteria growth Know the various physical/ chemical growth requirements of bacteria 	al
Unit	Topic Particular	Hours
Unit I	 Microscopy Basics of Microscopy: Magnification, Resolution, Numerical Aperture, Illumination System. Bright-field and Dark field microscope. Compound Microscope: Principle with Ray diagram, 	7

	construction, lens systems, working	
	Immersion oil and its use in a compound microscope	
	 Concept and types of aberrations, correction for aberrations 	
	 Concept and types of aberrations, correction for aberrations Handling and care of the microscope 	
	Staining	
Unit II	 Concepts of Dyes and Stains Types of stain (Acidic, Neutral and Basic) Mordant and fixative Theory of Staining (Physical and Chemical) Preparation and fixation of smear Methods of Staining Simple (Monochrome and Negative) Differential (Gram and Acid fast) Staining of organelles: Cell wall, Flagella, Nucleus, Metachromatic/Volutin granules, Capsule, endospore 	8
Unit III	 Growth and Reproduction of Bacteria Concept of growth and reproduction, mechanism of binary fission, fragmentation, budding Mathematical expression of growth, growth curve, generation time and growth rate Batch culture and typical growth curve of bacterial population and its application, Diauxic growth Quantitative measurement of bacterial growth: determination of cell number, cell mass and cell activity Synchronous and continuous culture growth with applications in microbiologyAlgae, Fungi and Protozoa 	7
	Microbial Nutrition	
Unit IV	 Physical parameters affecting growth: pH, temperature, water activity, Oxygen Types of bacteria based on their adaptations Temperature requirement (psychrophiles, mesophiles, thermophiles, thermoduric, psychotropic) pH requirement (acidophiles, neutrophiles and alkaliphiles) Salt/solute and water activity (halophiles, xerophiles, osmophilic) Oxygen requirement (aerobic, anaerobic, microaerophilic, facultative aerobe, facultative anaerobe) Pressure (barophile). Elements of Nutrition: Major (C, N, H, O, S & P) and Minor (Salts, growth factors) Media ingredients (water, peptone, malt extract, meat extract, yeast extract, trace elements, growth factor) Types of media: complex, synthetic, natural, selective, differential, enriched media Enrichment culture technique Concept of Auxotroph and Prototroph Classification of bacteria based on nutrition: Phototroph (Photoautotroph, Photo-heterotroph) and Chemotroph (Chemo-autotroph, Chemo-heterotroph) 	8

- Wiley, J. M., Sherwood, L. M. & Woolverton, C. J. (2013). Prescott's Microbiology. 9th edition. McGraw Hill International, NewYork.
- Madigan, M. T., Martinko, J. M., Dunlap, P. V. & Clark, D. P. (2014). Brock Biology of Microorganisms, 14thedition, Pearson International Edition, NewDelhi.
- Pelczar, M. J., Chan, E. C. S. & Krieg, N. R.(1993). Microbiology.5th edition. McGraw Hill Book Company, NewYork.
- Tortora, G. J. Funke B. R. & Case, C. L. (2010). Microbiology, 10thedition, Brenjamin Cummings Inc, California.
- Patil, U., Kulkarni, J. S., Chaudhari, A. B. & Chincholkar, S. B. (2016). Foundations in Microbiology, 9th edition, Nirali Prakashan, Pune.
- Modi, H. A. (2014) Elementary Microbiology, Vol.1 and 2, Akshar Prakashan, Ahmedabad.

FYBSc (Microbiology) Semester I

MIB-DSC-113: Practical course on Basic Microbiology

Total Hours: 60 Credits: 2

Course objectives	 To acquaint basic microbiological instruments and techniques To study various microorganisms present in the ecosystem To observe and learn the microbes using various staining technic To characterize the microbes using biochemical tests 	ques
Course Outcomes	 After successful completion of this course, students are expected to: Understand the basic microbial practices, instruments, appropria protective and emergency procedures Study the comparative characteristics of prokaryotes and eukary Learn theory and practical skills in microscopy, staining proceduand growth Comprehend the various methods for the identification of microorganisms 	rotes
Sr. No.	Topic Particular	Hours
1	Microbiology Good Laboratory Practices, laboratory rules and first aids.	4
2	To study the principle, working and application of instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter, Balance) used in the microbiology laboratory	4
3	Acquainting basic microbiology techniques I: Types of laboratory glassware, Cleaning and washing of Glassware, biosafety measures, disinfection of working table and hands, biological waste Disposal, Use of Microbial culture and its storage	4
4	Acquainting basic microbiology techniques II: Preparation of culture media for bacterial cultivation, Cotton Plugging, Wrapping the items prior to sterilization, sterilization with autoclave, Aseptic handling (LAF/ Bunsen burner), preparation of plates and slants, inoculation of bacterial culture and inoculating needle, labelling of incubation material, preservation.	4

5	Use and Care of Compound Microscope with functions of each part	4
6	 Study of microbes with using temporary mounts/ permanent slides Fungus e.g. Rhizopus/ Penicillium/ Aspergillus/ Fusarium Algae/BGA e.g. Spirogyra/ Anabena/ Nostoc/ Cyanobacteria Protozoans e.g.Amoeba/ Entamoeba/ Paramecium/ Plasmodium 	4
7	Study of colony characteristics of different bacteria (e.g. Escherichia coli, Staphylococcus aureus)	4
8	Study of Biochemical characterization through IMViC test	4
9	Study of biochemical characterization through TSI and Sugar fermentation	4
10	Study of bacterial morphology using Monochrome Staining	4
11	Study of morphological features of bacteria using Negative Staining	4
12	Study of Gram characteristics of bacteria using Gram's Staining	4
13	Study of acid fast characteristics of bacteria using Acid fast staining (<i>Nocardia</i> spp/ Atypical mycobacteria)	4
14	Effect of pH on growth of bacteria	4
15	Effect of temperature on growth of bacteria	4

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, W.M.T. Brown Publishers, Dubuque, USA.
- Cappucino, J & Sherman N.(2010) Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Delhi.
- Parija, S.C. (2005). Text Book of Practical Microbiology,1st edition, Ahuja Publishing House, New Delhi.
- Dubey, R. C & Maheshwari D. K. (2004). Practical Microbiology, 1st edition, S.Chand and Co., Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Co., New York.
- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, NewYork.
- Aneja, K.R.(1996), Experiments in Microbiology, 3rd edition, Wishwa Prakashan, New Delhi.

FYBSc (Microbiology) Semester I MIB-MIN-111 Basic Microbiology

Total Hours: 30 Credits: 2

	in Hours: 50 Credits: 2	
Course	To acquaint concepts in microbial diversity	
objectives	To make aware the students concerning stain and staining techniques	
	To know concepts related to the growth and reproduction of bacteria	
	To understand the physical and chemical parameters for bacterial gro	wth
Course	Successful completion of this course, students are expected to:	
outcomes	Know the diversity of microorganisms and differences among various	
	microbes	
	Differentiate microorganisms based on staining	
	Know the concepts of growth and quantitative measurement of bacteria	al
	growth	
	• Know the various physical/ chemical growth requirements of bacteria	
Unit	Topic particulars	Hours
	Microbial Diversity	
	Concept of a prokaryotic and eukaryotic cell	
	Concept of microbial diversity and diversity index	
	General characteristics, Morphological features, and significance:	
	 Viruses, Virion and Prions 	
Unit I	o Bacteria (Eubacteria, Rickettsia, Mycoplasma,	08
	Actinomycetes,) and Cyanobacteria	
	o Archae	
	o Algae	
	o Fungi	
	o Protozoa	
	Microscopy and staining	
	Basics of Microscopy: Magnification, Resolution, Numerical	
	Aperture, Illumination System.	
	Compound Microscope: Principle with Ray diagram, construction,	
	lens systems, working	
Unit II	Immersion oil and its use in a compound microscope	06
Cint II	Concepts of Dyes and Stains	00
	Types of stain (Acidic, Neutral and Basic)	
	Mordant and fixative	
	Theory of Staining (Physical and Chemical)	
	• Methods of Staining: Simple (Monochrome and Negative),	
	Differential (Gram)	
	Growth and Reproduction of Bacteria	
	• Concept of growth and reproduction, mechanism of binary fission,	
	fragmentation, budding	
** **	Batch culture and typical growth curve of bacterial population and its	0.0
Unit III	application.	08
	Quantitative measurement of bacterial growth: determination of cell	
	number, cell mass and cell activity	
	• Synchronous and continuous culture growth with applications in	
	microbiology	

	Microbial Nutrition	
	• Physical parameters affecting growth: pH, temperature, water activity,	
	Oxygen	
	Types of bacteria based on their adaptations	
	 Temperature requirement (psychrophiles, mesophiles, thermophiles, thermodurics, psychrotrophs), 	
	o pH requirement (acidophiles, neutrophiles and alkaliphiles),	
	 Salt/solute and water activity (halophiles, xerophiles, osmophilic), 	00
Unit IV	 Oxygen requirement (aerobic, anaerobic, microaerophilic, facultative aerobe, facultative anaerobe), Pressure (barophile). 	08
	 Elements of Nutrition: Major (C, N, H, O, S & P) and Minor (Salts, growth factors) 	
	 Media ingredients (water, peptone, malt extract, meat extract, yeast extract, trace elements, growth factor) 	
	o Types of media: complex, synthetic, natural, selective, differential, enriched media	
	Enrichment culture technique	

- Wiley, J. M., Sherwood, L. M. & Woolverton, C J. (2013) Prescott's Microbiology.
 9th edition. McGraw Hill International, NewYork
- o Madigan, M. T., Martinko, J. M, Dunlap P. V. & Clark, D. P. (2014). Brock Biology of Microorganisms, 14thedition, Pearson International Edition, NewDelhi,
- o Tortora, Funke and Case (2010). Microbiology, 10thedition, Brenjamin Cummings Inc, California.
- o Patil Ulhas, Kulkarni J. S., Chaudhari, A. B. & Chincholkar, S. B. (2016). Foundations in Microbiology, 9th edition, Nirali Prakashan, Pune.
- Modi, H. A. (2014) Elementary Microbiology, Vol.1 and 2, Akshar Prakashan, Ahmedabad.
- Frobisher, M. Hinsdill, Crabtree and Goodheart (1974). Fundamentals of Microbiology, 9th edition, WB Saunder's Co. USA.
- Pelczar, M. J., Chan, E. C. S. & Krieg, N. R. (1993). Microbiology. 5th edition. McGraw Hill Book Company, NewYork.

FYBSc (Microbiology) Semester I

MIB-MIN-112 Practical course on Basic Microbiology Total Hours: 60 Credits: 2

I Otal II	creuits. 2	
Course	To acquaint basic microbiological instruments and techniques	
objectives	 To study various microorganisms present in the ecosystem 	
	 To observe and learn the microbes using various staining techniques 	
	To characterize the microbes using biochemical tests	
Course	After successful completion of this course, students are expected to:	
Outcomes	• Understand the basic microbial practices, instruments, appropriate	
	protective and emergency procedures	
	Study the comparative characteristics of prokaryotes and eukaryotes	
	Learn theory and practical skills in microscopy, staining procedures and growth	

	Comprehend the various methods for the identification microorganisms	of
Sr. No.	Topic Particular	Hours
1	Microbiology Good Laboratory Practices, laboratory rules and first aids.	4
2	To study the principle, working and application of instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter, Balance) used in the microbiology laboratory	4
3	Acquainting basic microbiology techniques I: Types of laboratory glassware, Cleaning and washing of Glassware, biosafety measures, disinfection of working table and hands, biological waste Disposal, Use of Microbial culture and its storage	4
4	Acquainting basic microbiology techniques II: Preparation of culture media for bacterial cultivation, Cotton Plugging, Wrapping the items prior to sterilization, sterilization with autoclave, Aseptic handling (LAF/ Bunsen burner), preparation of plates and slants, inoculation of bacterial culture and inoculating needle, labelling of incubation material, preservation.	4
5	Use and Care of Compound Microscope with functions of each part	4
6	Study of microbes with using temporary mounts/ permanent slides Fungus e.g. Rhizopus/ Penicillium/ Aspergillus/ Fusarium Algae/BGA e,g. Spirogyra/ Anabena/ Nostoc/ Cyanobacteria Protozoans e.g.Amoeba/ Entamoeba/ Paramecium/ Plasmodium	4
7	Study of colony characteristics of different bacteria (e.g. <i>Escherichia coli, Staphylococcus aureus</i>)	4
8	Study of Biochemical characterization through IMViC test	4
9	Study of biochemical characterization through TSI and Sugar fermentation	4
10	Study of bacterial morphology using Monochrome Staining	4
11	Study of morphological features of bacteria using Negative Staining	4
12	Study of Gram characteristics of bacteria using Gram's Staining	4
13	Study of acid fast characteristics of bacteria using Acid fast staining (<i>Nocardia</i> spp/ Atypical mycobacteria)	4
14	Effect of pH on growth of bacteria	4
15	Effect of temperature on growth of bacteria	4

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, W.M.T. Brown Publishers, Dubuque, USA.
- Cappucino, J. & Sherman, N. (2010). Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Delhi.
- Parija, S. C. (2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.
- Dubey, R. C. & Maheshwari, D. K. (2004). Practical Microbiology, 1st edition, S.Chand and Co., Delhi.
- Harley, J. P. & Prescott L. M. (2002). Laboratory Exercises in Microbiology, 5th

edition, The McGraw-Hill Co., NewYork.

- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, NewYork.
- Aneja, K. R. (1996), Experiments in Microbiology, 3rd edition, Wishwa Prakashan, New Delhi.

FYBSc (Microbiology) Semester I MIB-OE-111 Health and Human Microbiome

Total Hours: 30 Credits: 2

Course objectives Course outcomes	 To acquaint basic knowledge of human health and body defence To study balanced diet and concept of hygiene To learn different systems of human body To get aware about microbes associated with human After successful completion of this course, students are expected to: Understand the importance of good health and immunity Aware about balance nutrition and importance of hygiene Get the understanding of different human system and their functioning Comprehend the microbes associated with human 	
Unit	Topic particular	Hours
Unit I	Human Health Introduction to health and its determinant Immunity: body's defence mechanism Types of immunity The cells and organs of the immune system Concept of antigen and antibody Balance nutrition and hygiene Introduction to nutrition Types of nutrients – carbohydrates, fats, proteins, vitamins, minerals Balanced diet, Optimum and good nutrition, malnutrition Concept of hygiene Personal, community and medical hygiene Good practices for hygiene The consequence of poor hygiene	7
Unit III	Human Anatomy Respiratory Gastrointestinal Central nervous system Excretory system Reproductive system Special senses – skin, eye, ear	8

	Human Microbiome	
	 Normal, resident and transient flora Concept of Pro and prebiotic 	
Unit IV	 The beneficial effect of normal flora Microflora of human body 	8
	Microorganism and infection	
	References	

- Anantnarayan, P. & Paniker, C. K. J., (2009), Textbook of Microbiology 8thEd, Universities Press, Hyderabad.
- Atlas, R. M. (1995). Microorganisms in our world, Mosby Year Book Inc.
- Chakraborty, P. (2013). A text book of Microbiology, New Central Book, Agency, Delhi.
- Dey, N. C. & Dey, T. K., (1999) Medical Bacteriology and Microbiology, 16th Ed, Allied Agency, Calcutta.
- Prescott, L. M., Hartley, J. P. & Klein, D. A., (1993), Microbiology, 2nd Ed., W. M. C. Brown Publ, England.
- Tortora, G. J., Funke, B. R. & Case, C. L., (2004), Microbiology, 8thEd., Person Education (Low Price edition), Delhi.

FYBSc (Microbiology)
Semester I
MIB-SEC-111 Techniques of Microbial Identification
Total Hours: 30 Credits: 2

Course	 To aquent basic knowledge of bacterial identification 	
objectives	 To study various methods for fungal identification 	
	 To learn techniques used for the detection of protozoa, algae and viru 	IS
	To get aware about advance techniques in microbial identification	
Course	After successful completion of this course, students are expected to:	
outcomes	Understand the skill of bacterial identification	
	Aware of the identification of fungi and get an understanding	of
	detection for microbes from samples	
	Comprehend the newer microbial identification techniques	
	Know the advance technique in microbial identification.	
Unit	Topic particular	Hours
	Identification of Bacteria	
	Bergey's System of Bacterial Classification: structure, scheme and	
	Overview	
=	 Morphological types and staining techniques for identification 	_
Unit I	Cultural, colonial and growth characteristics	8
	Resistance to antibiotics	
	 Fermentation and biochemical properties 	
	Rapid identification methods	
	Identification of Fungi	
	Introduction to classification fungi	
	Morphology of fungi and spores types	
Unit II	Field notes, drawings and photographs	8
	Wet mount: lactophenol and KOH preparation	
	Slide culture, germ tube test	
	Biochemical tests	
	Detection of microbes from pathological and ecological samples	
	 Examination of a faecal specimen for parasite and protozoa 	
	 Saline wet mount, iodine wet mount, 	
Unit III	 lactophenol cotton blue and Leishman staining 	7
	Observation of diatoms, flagellates, blue-green algae	'
	• Detection of a bacteriophage using plaque assay Cytopathic effect in	
	tissue culture	
	Advanced Techniques for microbial identification	
	Principle, method and significance of following technaiques	
	PCR technique for DNA amplification	
	• 16 s / 18 s rRNA technique	
Unit IV	Biolog microbial identification system	7
	Serological techniques	
	 Nucleic acid probes 	
	rate rate rate rate rate rate rate rate	
L	I .	l

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, W.M.T. Brown Publishers, Dubuque, USA.
- Cappucino, J, & Sherman, N.(2010). Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Delhi.
- Parija. S. C.(2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.
- Dubey, R. C. & Maheshwari, D. K. (2004). Practical Microbiology, 1st edition, S.Chand and Co., Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Co., New York.
- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, NewYork.
- Aneja, K. R. (1996). Experiments in Microbiology, 3rd edition, Wishwa Prakashan, New Delhi.

FYBSc (Microbiology) Semester I

MIB-SEC-112 Practical course on Microbial identification

Total H	Iours: 30 Credits:	1
Course objectives	 To acquaint basic knowledge of bacterial and fungal identification To learn techniques used for the detection of protozoa and algae 	
Course Outcomes	 After successful completion of this course, students are expected to: Understand the skill of bacterial and fungal identification Get an understanding of detection techniques for microbes from samples 	
Sr. No.	Topic Particular	Hours
1	Preperation of SOP for Balance and autoclave	4
2	MSDS for hazardas laboratory chemicals / solutions	4
3	To cultivate and study the colonial morphological of any given fungus	4
4	Microscopic observation of fungi using KOH mount	4
5	Morphological study of yeast using Germtube test	4
6	Microscopic observation of diatoms, flagellates, blue-green algae from stagnant water	4
7	To study the motility of given bacteria by swarming growth technique	4
8	Detection of enzymes: Catalase and urease	4

References

- Cappucino, J. & Sherman, N. (2010) Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Delhi.
- Dubey, R. C. & Maheshwari, D. K. (2004). Practical Microbiology, 1st edition, S.Chand and Co., Delhi.
- Harley, J. P. & Prescott L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Co., NewYork.
- Parija S. C. (2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.

F.Y.B.Sc. (Microbiology) Semester II

FYBSc (Microbiology) SemesterII MIB-DSC-121 Microbial ecology and cytology

Total Hours:30 Credits: 2

Course outcomes	 To acquaint students with basic concepts of Microbial Ecology and Interactions To get aware of microbes in extreme environment To illustrate the prokaryotic cell structure To elucidate the eukaryotic cell structure After successful completion of this course, students are expected to: Learn the importance of microbial interaction in the ecosystem 	
	• Summarize features and applications of microbes in extreme environm	nent
	• Understand the structural architecture and differences among bacteria	
	Apprehend the structural architecture and differences among Eukaryot	ic cells
Unit	Topic particular	Hours
	Microbial Ecology and Interactions	
Unit I	 Concept of microbial ecology and types of microbial interactions Positive and Negative: Mutualism, Cooperation, Commensalism, Predation, Ammensalism Concept, establishment (Direct and Re-infection) and importance of symbiosis Examples of Microbial interactions: Legume-rhizobium Mycorrhiza Lichen Ruminantsymbiosis Bacterial bioluminescence 	08
Unit II	 Microbes in Extreme Environment General introduction, features, examples, and applications of the following Thermophiles Psychrophiles Acidophiles Alkaliphiles Barophiles Halophiles 	06
Unit III	 Anatomy of Prokaryotic cell Ultra-structure of a bacterial cell: cell size, shape and arrangement, Structure, Function and Chemical Composition of Glycocalyx/capsule, flagella, Pilli, Cell wall, spheroplasts, protoplasts, and Lforms Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell Nucleolus, Nucleoid, Mesosomes, Plasmid, Ribosome, Cytoplasmic 	08

	inclusions (volutin granules, PHB granule, glycogen, carbohydrates, Magnetosomes, gas vesicles, carboxysomes, chlorosome and sulphur granules).	
	Endospore structure and formation	
	Anatomy of Eukaryotic cell	
	Ultra-structure of Fungal, Algal and Protozoal Cell	
Unit IV	 Structure, Function and Chemical Composition of Flagella, 	08
	Cell wall, Nucleus, Mitochondria, Chloroplast, Golgi	
	bodies, Ribosome, Lysosome	

- Black, J. G. (2008). Microbiology: Principles and Explorations, 7th edition, Prentice Hall, New Jersey.
- Madigan, M. T. & Martinko, J. M..(2014). Brock Biology of Microorganisms,14th edition, Parker J.Prentice Hall International, Inc., New Jersey.
- Stanier, R. Y, Ingraham, J. L, Wheelis, M. L. & Painter, P. R. (2005), General Microbiology, 5th edition, McMillan, London
- Salle, S. J. (1974). Fundamental Principals of Bacteriology, 2nd edition, Tata McGraw Hill Publishing Co.Ltd., New Delhi.
- Willey, J. M, Sherwood, L. M., & Woolverton, C. J. (2013) Prescott's Microbiology,9th edition, McGraw Hill Higher Education, New Delhi.
- Patil, U. K, Kulkarni, J. S, Chaudhari, A. B. & Chincholkar, S. B. (2016) Foundation in Microbiology, 9th edition, Nirali Prakashan, Pune

FYBSc (Microbiology) SemesterII MIB-DSC-122: Microbial Techniques

Total Hours: 30 Credits 02

Course objectives	To illustrate the different methods for the isolation and cultivation of	
objectives	microbes	
	To relate control of microbes with an aseptic condition	
	To learn disinfection as a process to control microbes	
	To understand sterilization as a process to control microbes	
Course	After successful completion of this course, students are expected to:	
outcomes	• Know microbial techniques for isolation of pure cultures of bacteria,	
	fungi, algae and virus	
	Deduce the kills related to aseptic handling of microbial cultures	
	Apply the knowledge to control microbes using disinfection	
	Use various methods for sterilization	
Unit	Topic particular	Hours
	Isolation and Cultivation of Microbes	
	Enrichment methods for bacteria	
	 Cultural techniques for bacteria: Streak plate, Pour plate, Spread 	
Unit I	plate	08
	Cultivation of anaerobes: Roll tube method, anaerobic jar and	
	anaerobic cabinet/ chamber	
	Cultivation of fungi, Blue green algae	

	• Cultivation of animal and plant viruses (living animals,	
	embryonated eggs and cell line cultures).	
	Cultivation of bacteriophage	
	Concept of aseptic condition and control of microbes	
	 Aseptic condition: necessity and application 	
	 Personal protection equipment 	
Unit II	• Aseptic inoculation: use of Bunsen burner, LAF, biosafety cabinets	08
Omt II	 Fumigation, sanitation, desk cleaning, waste disposal 	UO
	• Control of microbes by Low Temperature, Desiccation,	
	Osmotic pressure, Surface tension.	
	Pasteurization (HTST, UHT)	
	Control of Microbes by Disinfection	
	• Disinfection: Concept of disinfectant and characteristic of an ideal	
	disinfectant, Phenol coefficient (Rideal–Walker coefficient)	
	o Conditions Influencing the Effectiveness of antimicrobial	
	agents	
Unit III	o Concept of: Antiseptic, Sanitizer, Germicide, Antibiotics,	06
	Microbiocide, Microbiostasis.	
	o Mode of action and applications of Phenol and Phenolic	
	compounds, Alcohols, Halogens, Heavy metals and their	
	compounds, Dyes, Detergents, Quaternary ammonium	
	compounds, H ₂ O ₂ .	
	Control of Microbes by Sterilization	
	 Concept of sterilization, TDT and TDP 	
	 Concept of D, Z and F value 	
	 Physical methods: Dry heat (Hot air oven, Incineration), Moist 	
	heat (Autoclave, Tyndallisation) and Radiation-(X-rays,	
Unit IV	Gamma rays and UV rays)	08
	 Sterilization by Filtration: Membrane filter, LAF (HEPA), 	
	Nucleopore filters	
	Chemical methods: Ethylene oxide and Formaldehyde	
	Indicators of Sterilization: Chemical and Biological system	
	Validation of sterility in autoclave and LAF	
- 0	•	

- Pawar, C. B. & Daginawala, H. F. (1998). General Microbiology, Vol.I and II, 1stedition, Himalaya PublishingHouse, Mumbai.
- Black, J. G. (2008) Microbiology: Principles and Explorations, 7 th edition, Prentice Hall, New Jersey.
- Madigan, M. T. & Martinko, J. M. (2014). Brock Biology of Microorganisms, 14th edition, Parker J. Prentice Hall International, Inc., NewJersey.
- Frobisher, M. Hinsdill, R., Crabtree, K. T., & Goodheart, C. R. (1974). Fundamentals of Microbiology, 9th edition, WB Saunder's Co., Many,USA.
- Pelczar, M. J, Chan, E. C. S. & Krieg, N. R. (1993). Microbiology.5th edition. McGraw Hill Book Company, Penguin, USA.
- Patil, Ulhas, Kulkami, J. S., Chaudhari, A. B. & Chincholkar, S. B. (2016). Foundations in Microbiology, 9th edition, Nirali Prakashan, Pune.
- Modi, H. A. (2014). Elementary Microbiology, Vol. 1 and 2, Akshar Prakashan, Ahmedabad.

FYBSc (Microbiology) SemesterII

MIB-DSC-123: Practical course on Microbial Techniques

Total Hours: 60 Credits: 2

1014111	0415.00	
Course	 To know the staining procedures for bacterial structures 	
objectives	 To learn the isolation and cultivation techniques for bacteria 	
	 To understand the microflora monitoring from air, water and so 	il
	To validate the instruments and evaluate the disinfectant	
Course	After successful completion of this course, students are expected to:	
Outcomes	Stain the bacterial structures using special staining techniques	
	• Use pure culture and selective techniques to enrich and isolate	
	microorganisms.	
	Enumerate microflora from different ecological samples	
	Validate and evaluate instruments and disinfectant	
Sr. No.	Topic Particular	Hours
1	Study of motility of bacteria by hanging drop/ swarming growth	4
2	Perform the Capsule staining	4
3	Perform the Endospore staining	4
4	Isolation of bacteria from enriched soil sample by Streak Plate technique	4
5	Isolation of bacteria from water sample by spread platete chnique	4
6	Slide culture technique for fungi	4
7	Determination of Colony Forming Unit (cfu) by pour plate method from soil/ water sample	4
8	Use of selective media for bacteria e.g. MacConkeys agar/ EMB agar/SS agar	4
9	Effect of heavy metal (s) on growth of bacteria and demonstration of oligodynamic action	4
10	Study micro-flora of the air using settling velocity	4
11	Microscopic observation of Rhizobacteria from root nodules /mycorrhizal spores from soil	4
12	Evaluation of skin disinfectant (alcohol/ soap/ Dettol) using Rideal—Walker coefficient	4
13	Preparation of standard solutions (Normal/ Molar/ Percentage)	4
14	Validation of autoclave using chemical indicator	4
15	Demonstration of bacterial growth by spectrophotometer	4

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, W.M.T.Brown Publishers.
- Cappucino, J. & Sherman, N. (2010). Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Jersey.
- Parija, S. C. (2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Companies, London.
- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The Mc Graw-Hill Companies,New Delhi.
- Aneja, K. R. (1996). Experiments in Microbiology, 3rd edition, Wishwa Prakashan, NewDelhi.

FYBSc (Microbiology) SemesterII MIB-MIN-121: Microbes and their control

Total Hours: 30

Credits 02

Course objectives	 To illustrate the prokaryotic cell structure To illustrate the different methods for the isolation and cultivation of mic To relate control of microbes with an aseptic condition To learn disinfection and sterilization as a process to control microbes 	erobes
Course outcomes	 After successful completion of this course, students are expected to: Understand the structural architecture and differences among bacteria Know microbial techniques for isolation of pure cultures of bacteria, fungi, algae and virus Deduce the skills related to aseptic handling of microbial cultures Apply the knowledge to control microbes using disinfection and sterili 	zation
Unit	Topic particular	Hours
Unit I	 Anatomy of Prokaryotic cell Ultra-structure of a bacterial cell: cell size, shape and arrangement, Structure, Function and Chemical Composition of Glycocalyx/capsule, flagella, Pilli, Cell wall, spheroplasts, protoplasts, and Lforms Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell Nucleolus, Nucleoid, Mesosomes, Plasmid, Ribosome, Cytoplasmic inclusions (volutin granules, PHB granule, glycogen, carbohydrates, Magnetosomes, gas vesicles, carboxysomes, chlorosome and sulphur granules). Endospore structure and formation 	08
Unit II	 Isolation and Cultivation of Microbes Enrichment methods for bacteria Cultural techniques for bacteria: Streak plate, Pour plate, Spread plate Cultivation of anaerobes:Roll tube method, anaerobic jar and anaerobic cabinet/ chamber Cultivation of fungi, Blue green algae Cultivation of animal and plant viruses (living animals, embryonated eggs and cell line cultures). Cultivation of bacteriophage 	08
Unit III	 Concept of aseptic condition and control of microbes Aseptic condition: necessity and application Personal protection equipment Aseptic inoculation: use of Bunsen burner, LAF, biosafety cabinets Fumigation, sanitation, desk cleaning, waste disposal Control of microbes by Low Temperature, Desiccation, Osmotic pressure, Surface tension. Pasteurization (HTST, UHT) 	08

Unit IV	 Control of Microbes by Disinfection and Sterilization Disinfection: Concept of disinfectant and characteristics of an ideal disinfectant Concept of: Antiseptic, Sanitizer, Germicide, Antibiotics, Microbiocide, Microbiostasis. Mode of action and applications of Phenol and Phenolic compounds, Alcohols, Halogens, Heavy metals Detergents, H₂O₂. Physical methods: Dry heat (Hot air oven), Moist heat (Autoclave) and Radiation-(UV rays) Sterilization by Filtration: Membrane filter, LAF (HEPA), Nucleopore filters 	06

Total Hours 60

- Pawar, C. B., & Daginawala, H. F. (1998) General Microbiology, Vol.I and II, 1stedition, Himalaya PublishingHouse, Mumbai.
- Black, J. G. (2008). Microbiology: Principles and Explorations, 7th edition, PrenticeHall, New Jersey.
- Madigan, M. T. & Martinko, J. M. (2014). Brock Biology of Microorganisms, 14th edition, Parker J.Prentice Hall International, Inc., NewJersey.
- Frobisher, M., Hinsdill, R., Crabtree, K. T., & Goodheart, C. R. (1974). Fundamentals of Microbiology, 9th edition, WB Saunder's Co., Many, USA.
- Pelczar, M. J., Chan, E. C. S. & Krieg, N. R. (1993). Microbiology. 5th edition. McGraw Hill Book Company, Penguin, USA.
- Patil Ulhas, Kulkami, J. S., Chaudhari, A. B. & Chincholkar, S. B. (2016) Foundations in Microbiology, 9th edition, Nirali Prakashan, Pune.
- Modi, H. A. (2014). Elementary Microbiology, Vol.1and2, Akshar Prakashan, Ahmedabad.

FYBSc (Microbiology) SemesterII MIB-MIN-122: Practical course on microbal techniques

1 otal Hot	irs: 60 Credits: 2
Course objectives	 To know the staining procedures for bacterial structures To learn the isolation and cultivation techniques for bacteria To understand the microflora monitoring from air, water and soil To validate the instruments and evaluate the disinfectant
Course Outcomes	 After successful completion of this course, students are expected to: Stain the bacterial structures using special staining techniques Use pure culture and selective techniques to enrich and isolate microorganisms. Enumerate microflora from different ecological samples validate and evaluate instruments and disinfectant

Cradita 2

Sr. No.	Topic Particular	Hours
1	Study of motility of bacteria by hanging drop/ swarming growth	4
2	Perform the Capsule staining	4
3	Perform the Endospore staining	4
4	Isolation of bacteria from enriched soil sample by Streak Plate technique	4
5	Isolation of bacteria from water sample by spread platete chnique	4
6	Slide culture technique for fungi	4
7	Determination of Colony Forming Unit (cfu) by pour plate method from soil/ water sample	4
8	Use of selective media for bacteria e.g. MacConkeys agar/ EMB agar/SS agar	4
9	Effect of heavy metal (s) on growth of bacteria and demonstration of oligodynamic action	4
10	Study micro-flora of the air using settling velocity	4
11	Microscopic observation of Rhizobacteria from root nodules /mycorrhizal spores from soil	4
12	Evaluation of skin disinfectant (alcohol/ soap/ Dettol) using Rideal—Walker coefficient	4
13	Preparation of standard solutions (Normal/ Molar/ Percentage)	4
14	Validation of autoclave using chemical indicator	4
15	Demonstration of bacterial growth by spectrophotometer	4

- Atlas, R. M. (1997). Principles of Microbiology, 2nd edition, WM.T.Brown Publishers, USA.
- Cappucino, J. & Sherman N. (2010). Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Jersey.
- Parija, S. C. (2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Companies, London.
- Benson, H. (2001). Microbiological Applications Lab Manual, 8th edition, The Mc Graw-Hill Companies, New Delhi.
 - Aneja, K. R. (1996). Experiments in Microbiology, 3rd edition, Wishwa Prakashan, NewDelhi.

FYBSc (Microbiology) SemesterII MIB-OE-121 Microbial diseases and control

Total Hours:	Credits 02
Course	To know the concept in medical microbiology
objectives	To study about Bacterial and fungal diseases
	To learn about viral and protozoal diseases
	 To make aware about control, prevention and treatment of diseases

	 Know diseases with respect to the few bacterial and fungal causative age Learn disease with respect to the few viral and protozal causative agents 	
	Deduce the control, prevention and treatment of diseases	
Unit	Topic particular	Hours
	Concept in medical microbiology	
	Disease-causing agent	
	o Types of diseases – Acquired (infections, noninfectious), congenital,	
	o Infection: types, source and transmission	_
Unit I	o Signs, symptoms and syndromes	7
	Microbial pathogenicity	
	O Diagnosis	
	 Prevention and treatment 	
	Bacterial and fungal disease	
	Diseases with respect to the causative agent, pathogenicity, lab diagnosis,	
	prevention and treatment	
Unit II	o Enteric fever	7
	o Pneumonia	,
	o Dermatitis	
	o Candidiasis	
	Viral and protozoal disease	
	Diseases with respect to the causative agent, pathogenicity, lab diagnosis,	
	prevention and treatment	
Unit III	o COVID-19	8
	o Rabies	0
	o Malaria	
	Ameboic dysentery	
	Control, prevention and treatment	
	Vaccination – example and schedule	
Unit IV	 Examples of chemotherapeutic agents – drugs, toxoids, interferons 	Q
	 Antimicrobial agents examples – antibacterial, antifungal, 	8
	antiprotozoal	
	Concept of Multiple drug resistance	

After successful completion of this course, students are expected to:

Understand the fundamenals of medical microbiology

References

Course

outcomes

- Anantnarayan, P., Paniker, C. K. J., (2009). Textbook of Microbiology 8thEd, Universities Press, Hyderabad.
- Atlas, R. M. (1995). Microorganisms in our world, Mosby Year Book Inc.
- Chakraborty, P. (2013). A text book of Microbiology, New Central Book, Agency, Delhi.
- Dey, N. C. & Dey, T. K., (1999). Medical Bacteriology and Microbiology, 16th Ed, Allied Agency, Calcutta.
- Prescott, L. M., Hartley, J. P. & Klein, D. A., (1993), Microbiology, 2nd Ed., W. M. C. Brown Publ, England.
- Tortora, G. J., Funke, B. R. and Case, C. L., (2004), Microbiology, 8thEd., Person Education (Low Price edition), Delhi.
- Dubey, R. C., & Maheshwari, D. K. (2005). Text Book of Microbiology, S Chand and Co, New Delhi.

FYBSc (Microbiology) SemesterII

MIB-SEC-121: Methods in Microbial Testing

Total Hours: 30 Credits 02

1.2.42	
• To learn about microbial testing of air and soil	
To learn about microbial water analysis	
To make aware of quality testing in pharmaceutical industries	
Course After successful completion of this course, students are expected to:	
outcomes • Inculcate the skills used in the food and dairy industry	
incureace the skins used in the food and dairy industry	
Comprehend microbial water analysis and its permissible limits. Poduce the guality and regulatory aspects of pharms and dusts.	
Deduce the quality and regulatory aspects of pharma products	
Unit Topic particular	Hours
Microbial testing of food and dairy	
 Sampling of food/ dairy products 	
Unit I O Serial dilution and agar plate technique	7
o Breed count	
Resazurin, MBRT, phosphatase test	
Mycotoxin detection	
Microbial testing of air and soil	
o Air sampling	
o Impingement of air in medium	34
Unit II O Active (use of air sampler) and passive monitoring (settling veloc	ity) 7
Sampling technique for SoilTotal viable count	
Total viable countNPK analysis	
Microbial testing of water	
Multiple tube test: Preseptive, confirmed, completed test	
Standard plate count	
Unit III O Standard place count O DO, BOD, and COD testing	8
o TDS, TSS, TS testing	
 Membrane filtration 	
Microbial testing of Pharma product	
o Good Manufacturing Practices (GMP)	
o Good Laboratory Practices (GLP)	
Unit IV O Sampling of pharma product	8
Regulatory aspects of quality control	
 Quality assurance 	
 Sampling and specification of raw materials and finished Products 	S

- Prescott, L. M., Hartley, J. P. & Klein, D. A., (1993). Microbiology, 2nd Ed., W. M. C. Brown Publ, England
- Tortora, G. J., Funke, B. R. and Case, C. L., (2004). Microbiology, 8thEd., Person Education (Low Price edition), Delhi
- Pawar, C. B., & Daginawala, H. F. (1998). General Microbiology, Vol.I and II, 1stedition, Himalaya PublishingHouse, Mumbai.

- Pelczar, M. J., Chan, E. C. S. & Krieg, N. R. (1993). Microbiology. 5th edition. McGraw Hill Book Company, Penguin, USA.
- Patil Ulhas, Kulkami, J. S., Chaudhari, A. B. & Chincholkar, S. B. (2016). Foundations in Microbiology, 9th edition, Nirali Prakashan, Pune.
- Modi, H. A. (2014). Elementary Microbiology, Vol. 1 and 2, Akshar Prakashan, Ahmedabad.

FYBSc (Microbiology) SemesterII

MIB-SEC-122: Practical course on Microbial testing

Total Hours: 30 Credits 01

Course objective s	 To know the microbial test used in food and dairy industry To learn about microbial testing of air, soil and water 	
Course Outcomes	 After successful completion of this course, students are expected to: Inculcate the skills used in the food and dairy industry Acquaint the skills related to the microbial analysis of air, soil and water permissible limits 	r with its
Sr. No.	Topic Particular	Hours
1	Enumeration of bacteria from food /milk samples using standard plate count	4
2	To check the efficacy of milk pasteurization using the Phosphatase test	4
3	To analyze the laboratory air using an air sampler	4
4	Determination of TS and TDS of wastewater	4
5	To determine the Dissolved Oxygen (DO) of sewage water	4
6	Bacterial detection using differential coliform test	4
7	Demonstration of LAF and biosafety cabinet	4
8	Documentation and report writing in the microbiological industry (anyone)	4

- Aneja, K. R. (1996). Experiments in Microbiology, 3rd edition, Wishwa Prakashan, New Delhi
- Cappucino J. & Sherman N. (2010). Microbiology: A Laboratory Manual, 9th edition, Pearson Education Limited, New Delhi.
- Dubey, R. C. and Maheshwari D. K. (2004). Practical Microbiology, 1st edition, S.Chand and Co., Delhi.
- Harley, J. P. & Prescott, L. M. (2002). Laboratory Exercises in Microbiology, 5th edition, The McGraw-Hill Co., New York.
- Parija S. C. (2005). Text Book of Practical Microbiology, 1st edition, Ahuja Publishing House, New Delhi.