K. C. E. Society's

Moolji Jaitha College

An 'Autonomous College' Affiliated to K.B.C. North Maharashtra University, Jalgaon.

NAAC Reaccredited Grade - A (CGPA: 3.15 - 3rd Cycle) UGC honoured "College of Excellence" (2014-2019) DST(FIST) Assisted College

के. सी. ई. सोसायटीचे मूळजी जेठा महाविद्यालय

क.ब.चौ. उत्तर महाराष्ट्र विद्यापीठ, जळगाव संलग्नित 'स्वायत्त महाविद्यालय'

नॅकद्वारा पुनर्मानांकित श्रेणी -'ए'(सी.जी.पी.ए. : ३.१५ - तिसरी फेरी) विद्यापीठ अनुदान आयोगाद्वारा घोषित 'कॉलेज ऑफ एक्सलन्स' (२०१४-२०१९) डी.एस.टी. (फीस्ट) अंतर्गत अर्थसहाय्य प्राप्त

Date:- 01/08/2023

NOTIFICATION

Sub:- CBCS Syllabi of B. Sc. in Mathematics (Sem. I & II)

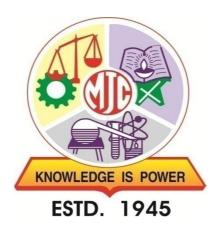
Ref.:- Decision of the Academic Council at its meeting held on 26/07/2023.

The Syllabi of B. Sc. in Mathematics (First and Second Semesters) as per **NATIONAL EDUCATION POLICY - 2020** and approved by the Academic Council as referred above are hereby notified for implementation with effect from the academic year 2023-24.

Copy of the Syllabi Shall be downloaded from the College Website (www.kcesmjcollege.in)

Sd/-Chairman, Board of Studies

To:


- 1) The Head of the Dept., M. J. College, Jalgaon.
- 2) The office of the COE, M. J. College, Jalgaon.
- 3) The office of the Registrar, M. J. College, Jalgaon.

Khandesh College Education Society's

Moolji Jaitha College, Jalgaon

An "Autonomous College"

Affiliated to
Kavayitri Bahinabai Chaudhari
North Maharashtra University, Jalgaon-425001

STRUCTURE AND SYLLABUS

B.Sc. Honours / Honours with Research (F.Y.B.Sc. Mathematics)

Under Choice Based Credit System (CBCS) and as per NEP-2020 Guidelines

[w.e.f. Academic Year: 2023-24]

Preface

The Moolji Jaitha College (Autonomous) has adopted a department-specific model as per the guidelines of UGC, NEP-2020 and the Government of Maharashtra. The Board of Studies in Mathematics of the college has prepared the syllabus for the first-year graduate of Mathematics. The syllabus cultivates theoretical knowledge and applications of different fields of Mathematics. The contents of the syllabus have been prepared to accommodate the fundamental aspects of various disciplines of Mathematics and to build the foundation for various applied sectors of Mathematics. The program will be enlightened the students with the advanced knowledge of Mathematics, which will help to enhance student's employability.

The overall curriculum of three/four year covers pure mathematics, applied mathematics and computational mathematics with programming. The syllabus is structured to cater the knowledge and skills required in the research field, Industrial Sector and Entrepreneurship etc.. The detailed syllabus of each paper is appended with a list of suggested readings.

Programme Outcomes (PO) for B.Sc. Mathematics honours/ Honours with Research

Upon successful completion of the B.Sc. program, student will be able to:

PO No.	PO
1	Understand the basic concepts and fundamental principles related to various science branches
2	Aquaintthe skills in handling scientific instruments and performing in laboratory experiments
3	Relate various scientific phenomena and their relevancies in the day-to-day life.
4	Analyse experimental data critically and systematically to draw the objective conclusions.
5	Develop various skills such as communication, leadership, teamwork, social, research etc., which will help in expressing ideas and views clearly
6	Develop interdisciplinary approach for providing better solutions and sustainable developments.

Programme Specific Outcome (PSO) for B.Sc. Mathematics Honours/Honours with Research:

After completion of this course, students are expected to:

PSO No.	PSO
1	Demonstrate the concepts involved in Real analysis, Matrix Theory, Differential equations,
	Algebra, Number Theory and Applied Mathematics.
2	Gain proficiency in mathematical techniques of both pure and applied mathematics and will
	be able to apply necessary mathematical methods to a scientific problem.
3	Acquire significant knowledge on various aspects related to Linear algebra, Metric spaces,
	Lattice theory, Integral transforms, Optimization techniques and Partial Differential equations.
4	Learn to work independently as well as a team to formulate appropriate mathematical
	methods.
5	Develop the ability to understand and practice the morality and ethics related to scientific
	research.
6	Realize the scope of Mathematics and plan continue their education as a Post-Graduate
	student of Mathematics and contribute to Mathematics through their research as a doctoral
	student.

Leve		Major (Core) Subjects		Minor	GE/	VSC,	AEC,	CC, FP,	Cumulative	Degree/
Leve	Sem	Mandatory (DSC)	Elective (DSE)	Subjects (MIN)	GE/ OE	SEC (VESC)	VEC, IKS	CED	Credits/Sem	Cumulative Cr.
	I	DSC-1 (2T) DSC-2 (2T) DSC-3 (2T)	_	MIN-1 (2T) MIN-2 (2T)	OE-1 (2T)	SEC-1 (2T) SEC-2 (1P)	AEC-1 (2T) (ENG) VEC-1 (2T) (ES) IKS (1T)	CC-1 (2)	22	T.G
1.5	п	DSC-4 (2T) DSC-5 (2T) (IKS) DSC-6 (2T)		MIN-3 (2T) MIN-4 (2T)	OE-2 (2T)	SEC-3 (2T) SEC-4 (1P)	AEC-2 (2T) (ENG) VEC-2 (2T) (CI) IKS (1T)	CC-2 (2)	22	UG Certificate 44
	Cum. Cr	12		8	4	6	4+4+2	4	44	
Exit op	otion: Award	d of UG Certific	ate in Major	with 44 credits and		tional 4 credits c	ore NSQF cours	se/ Internship	OR Continue v	vith Major and
	Ш	DSC-7 (2T) DSC-8 (2T) DSC-9 (2P) DSC-10 (2P)		MIN-5 (2T) MIN-6 (2P)	OE-3 (2T) OE-4 (2P)		AEC-3 (2T) (MIL)	CC-3 (2) CEP (2)	22	UG
5.0	IV	DSC-11 (2T) DSC-12 (2T) DSC-13 (2P) DSC-14 (2P)		MIN-7 (2T) MIN-8 (2P)	OE- 5 (2T) OE-6 (2P)		AEC-4 (2T) (MIL)	CC-4 (2) FP (2)	22	Diploma 88
	Cum. Cr	28		16	10	6	8+4+2	8+2+2	88	
	nd Minor.	DSC-15 (2T) DSC-16 (2T)	DSE-1 (2T) A/B DSE-2	Minor with 88 cre	edits and	VSC-1 (2T)	credits core NS(-	ontinue with
	V	DSC-17 (2T) DSC-18 (2P) DSC-19 (2P)	(2P) A/B	MIN-9 (2T/P)		VSC-2 (2P)		OJT/Int(2)	22	UG
5.5	VI	DSC-20 (2T) DSC-21 (2T) DSC-22 (2T) DSC-23 (2P) DSC-24 (2P)	DSE-3 (2T) A/B DSE-4 (2P) A/B	MIN-10(2T/P)	_	VSC-3 (2T) VSC-4 (2P)		OJT/Int(2)	22	Degree 132
	Cum. Cr.	48	08	20	10	8+6	8+4+2	8+2+2+4	132	
		Exit opt	tion: Award o	f UG Degree in M	ajor with	132 credits OR	Continue with M	Major and Mii	nor	
	VII	DSC-25 (4T) DSC-26 (4T) DSC-28 (4T) DSC-27 (2P)	DSE-5 (2T) A/B DSE-6(2P) A/B	RM (4T)	_				22	UG Honors Degree 176
5.0	VIII	DSC-29 (4T) DSC-30 (4T) DSC-32 (4T) DSC-31 (2P)	DSE-7 (2T) A/B DSE-8(2P) A/B		_			OJT/Int (4)	22	
	Cum. Cr.	76	16	20+4	10	8+6	8+4+2	8+2+2+8	176	
			Four	Year UG Honors I	Degree in	Major and Min	or with 176 cred	lits		
	VII	DSC-25 (4T) DSC-26 (4T) DSC-27 (2P)	DSE-5 (2T) A/B DSE-6 (2P) A/B	RM (2T)				RP (6)	22	UG Honors wit Research Degree 176
6.0	VIII	DSC-29 (4T) DSC-30 (4T) DSC-31 (2P)	DSE-7 (2T) A/B DSE-8 (2P) A/B	RM (2T)				RP (6)	22	
	Cum. Cr.	68	16	20+4	10	8+6	8+4+2	8+2+2+8+12	176	
				G Honours with Re					1,0	1

Sem- Semester, DSC- Department Specific Course, DSE- Department Specific Elective, T- Theory, P- Practical, CC-Cocurricular RM-Research Methodology, OJT- On Job Training, FP- Field Project, Int- Internship, RP- Research Project,

Multiple Entry and Multiple Exit options:

The multiple entry and exit options with the award of UG certificate/ UG diploma/ or three-year degree depending upon the number of credits secured;

Levels	Qualification Title	Credit Requirements		Semester	Year
		Minimum	Maximum		
4.5	UG Certificate	40	44	2	1
5.0	UG Diploma	80	88	4	2
5.5	Three Year Bachelor's Degree	120	132	6	3
6.0	Bachelor's Degree- Honours	160	176	8	4
	Or				
	Bachelor's Degree- Honours with Research				

F. Y. B. Sc. Mathematics Course Structure

Semester	Course Module	Credit	Hours/ week	TH/ PR	Code	Title
	DSC	2	2	TH	MTH-DSC-111	Calculus-I
	DSC	2	2	TH	MTH -DSC-112	Theory of Matrices
	DSC	2	2	TH	MTH -DSC-113	Theory of Equations
	MIN	2	2	TH	MTH -MIN-111	Set Theory and Logic
	MIN	2	2	TH	MTH -MIN-112	Matrix Algebra
	OE/GE	2	2	TH	MTH -OE-111	Mathematics for Competitive Exams-I
	SEC	2	2	TH	MTH -SEC-111	Introduction to Scilab
	SEC	1	2	PR	MTH -SEC-112	Practical course on Scilab
I	AEC	2	2	TH	ENGS-AEC-111	English
1	VEC	2	2	TH	ES -VEC-111	Environmental Studies
	IKS	1	1	TH	IKS-111	Indian Knowledge System
	CC	2	2	CC	NCC-CC-111	NCC
					NSS-CC-111	NSS
					SPT-CC-111	Sports
					CUL-CC-111	Cultural
	DSC	2	2	TH	MTH -DSC-121	Calculus-II
	DSC	2	2	TH	MTH -DSC-122	Ordinary Differential Equations
	DSC	2	2	TH	MTH -DSC-123	Numerical Analysis
	MIN	2	2	TH	MTH -MIN-121	Discrete Mathematics
	MIN	2	2	TH	MTH -MIN-122	Numerical Methods
	OE/GE	2	2	TH	MTH -OE-121	Mathematics for Competitive Exams-II
	SEC	2	2	TH	MTH -SEC-121	Introduction to Python
	SEC	1	2	PR	MTH -SEC-122	Practical course on Python
II	AEC	2	2	TH	ENGS-AEC-121	English
	VEC	2	2	TH	CI-VEC-121	Constitution of India
	IKS	1	1	TH	IKS-121	Indian Knowledge System
	CC	2	2	CC	NCC-CC-121	NCC
					NSS-CC-121	NSS
					SPT-CC-121	Sports
Dad	D				CUL-CC-121	Cultural

DSC : Department-Specific Core course ENG : English

DSE:Department-Specific electiveES:Environmental StudiesGE/OE:Generic/ Open electiveCI:Constitution of IndiaSEC:Skill Enhancement CourseIKS:Indian Knowledge SystemMIN:Minor courseCC:Co-curricular course

AEC : Ability Enhancement Course TH : Theory VEC : Value Education Courses PR : Practical

Exam Pattern:

• Each theory and practical course will be of 50 marks comprising of 20 marks internal and 30 marks external examination.

External Theory Examination (30 marks):

- External examination will be of 1.30 hours duration for each theory course. There shall be 3 questions while the tentative pattern of question papers shall be as follows;
- Q1 will be of 6 marks (attempt any 2 out of 3 sub-questions).
- Q2 and Q3 Attempt any 3 out of 4 sub-questions, each 4 marks.

External Practical Examination (30 marks):

- Major, SEC and Minor practical examination shall be conducted by the respective department at the end of the semester. Practical examination will be of minimum 3 hours duration and shall be conducted as per schedule. There shall be 05 marks for journal and viva-voce of Major and Minor practical exam. No marks for journal and viva-voce of SEC practical exam. Certified journal is compulsory to appear for practical examination of Major, SEC and Minor.
- Note: External practical examination of SEC will be of 25 marks and there will be no internal exam for SEC practical.

Internal Theory Examination (20 marks):

The Continuous Internal Evaluation for theory papers shall consist of two methods:

1. Continuous & Comprehensive Evaluation (CCE):

CCE will carry a maximum of 30% weightage (30/15 marks) of the total marks for a course. Before the start of the academic session in each semester, the subject teacher should choose any three assessment methods from the following list, with each method carrying 10/5 marks:

- i. Individual Assignments
- ii. Seminars/Classroom Presentations/Quizzes
- iii. Group Discussions/Class Discussion/Group Assignments
- iv. Case studies/Case lets
- v. Participatory & Industry-Integrated Learning/Field visits
- vi. Practical activities/Problem Solving Exercises
- vii. Participation in Seminars/Academic Events/Symposia, etc.
- viii. Mini Projects/Capstone Projects
- ix. Book review/Article review/Article preparation
- x. Any other academic activity
- xi. Each chosen CCE method shall be based on a particular unit of the syllabus, ensuring that

three units of the syllabus are mapped to the CCEs.

2. Internal Assessment Tests (IAT):

IAT will carry a maximum of 10% weightage (10/5 marks) of the total marks for a course. IAT shall be conducted at the end of the semester and will assess the remaining unit of the syllabus that was not covered by the CCEs. The subject teacher is at liberty to decide which units are to be assessed using CCEs and which unit is to be assessed on the basis of IAT.

The overall weightage of Continuous Internal Evaluation (CCE + IAT) shall be 40% of the total marks for the course. The remaining 60% of the marks shall be allocated to the semester-end examinations.

The subject teachers are required to communicate the chosen CCE methods and the corresponding syllabus units to the students at the beginning of the semester to ensure clarity and proper preparation.

Internal Practical Examination (20 marks):

- Internal practical examination of 10 marks will be conducted by department as per schedule given.
- For internal practical examination student must produce the laboratory journal of practicals completed along with the completion certificate signed by the concerned teacher and the Head of the department.
- There shall be continuous assessment of 30 marks based on student performance throughout the semester. This assessment can include quizzes, group discussions, presentations and other activities assigned by the faculty during regular practicals. For details refer internal theory examination guidelines.
- Finally 40 (10+30) marks performance of student will be converted into 20 marks.

SEMESTER-I

F.Y.B.Sc. Mathematics (Major) SEMESTER-I MTH-DSC-111: Calculus-I

Course	To know the concept of real numbers, supremum, infimum and	
Objectives	completeness of real numbers.	
	Assimilate the notion of limit of a sequence.	
	Assimilate the notion of convergence of a series of real numbers. The series of real numbers are series of real numbers.	
	To know the limit of a function at a point.	
Course	After successful completion of this course, students are expected to:	
Outcomes	• Understand the notions of real numbers, supremum, infimum and complet	eness
	of real numbers.	
	 Understand the notion of limit of a sequence. Understand the notion of convergence of a series of real numbers. 	
	 Calculate the limit of a function at a point. 	
Unit	Content	Hours
Unit I	Real Numbers:	
	Algebraic properties of \mathbb{R} , Order properties of \mathbb{R} , Well-Ordering Property	
	of N. Arithmetic mean-Geometric mean inequality, Bernoulli's	
	inequality.(Revision: essential properties should be revised with illustrative	
	examples), Absolute value function and its properties, Triangle inequality	7
	and its consequences, neighbourhood of a point on a real line, Definitions of	7
	Upper bound, Lower bound, bounded sets, supremum, infimum of subsets of	
	\mathbb{R} , completeness property of \mathbb{R} , Archimedean property and its consequences,	
	the density theorem (without proof), Intervals of real line, nested interval	
	property (statement only).	
Unit II	Sequences:	
	Definition and examples of sequences of real numbers, Definition of limit	
	of sequence and uniqueness of limit, Examples of limit of sequence, Definition of bounded sequence, every convergent sequence is bounded,	
	Algebra of limits, Monotone sequences, Monotone convergence theorem,	8
	Definition of subsequence and examples, Divergence criteria, Monotone	
	Subsequence theorem (without proof), Bolzano-Weierstrass theorem	
	(first proof), Cauchy sequence (definition and examples only).	
Unit III	Series:	_
	Definition, Sequence of partial sums, Convergent series and Divergent series, Some tests for convergence of series (statements and examples only).	7
Unit IV	Limits:	
	Functions and their Graphs, Definition of cluster point and examples,	
	Definition of limit of a function, Sequential criterion for limits, Divergence	8
	criteria, Algebra of limits (proofs using sequential criterion), Squeeze	
Gt. 7	theorem for limit, one sided limits, infinite limits (without proof).	
Study	Bartle, R. G., and Sherbert, D. R., Introduction to Real Analysis (4th ad) John Wiley and Sons Inc.	
Resources	ed.). John Wiley and Sons Inc.	
	• Malik, S. C. (2011). <i>Principles of Real Analysis</i> (2 nd ed.). New Academic Science.	
	 Howard A., Bivens, I., and Stephan D. (2016). Calculus (10th ed.). 	
	Wiley India.	
	miley illuia.	

- Gabriel, K. (1986). Aspects of Calculus. Springer-Verlag.
- Wieslaw, K., and Rai B. (2003). Calculus with Maple Labs. Narosa.
- Prasad, G. (2016). *Differential Calculus* (19th ed.). Pothishala Pvt. Ltd.
- Thomas, G. B., Hass, J., Heil, C., and Weir M. D. (2018). *Thomas' Calculus* (14th ed.). Pearson Education.

F.Y.B.Sc. Mathematics (Major) SEMESTER-I MTH-DSC-112: Theory of Matrices

Course objectives	 To know the basic need of this course is to understand the concepts applications of matrices. 	
	• It will improve problem solving and logical thinking abilities of the students	•
	To study the concepts of theory of matrices in linear algebra.	
	To use theory of matrices in solving linear equations.	
Course	Upon successful completion of this course the student will be able to:	
outcomes	Understand operations on matrices.	
	 Understand the concept of rank of a matrix and inverse of a matrix. 	
	Understand the concept of eigenvalues and eigenvectors.	
	Use theory of matrices to scaling & shearing, reflection, rotation & translation	on.
Unit	Content	Hours
Unit I	Rank of Matrix:	
	Elementary operations on matrices	
	Adjoint of a matrix & Inverse of a matrix	
	Existence & uniqueness theorem of inverse of a matrix	
	Properties of inverse of a matrix	7
	Elementary matrices	
	Rank and normal form of a matrix	
	Reduction of a matrix to its normal form	
	Rank of product of two matrices	
Unit II	System of Linear Equations:	
	A homogeneous and non-homogeneous system of linear equations	8
	Consistency of system of linear equations	O
	Application of matrices to solve the system of linear equations	
Unit III	Eigen Values and Eigen Vectors:	
	Orthogonal matrices and properties of orthogonal matrices	
	Characteristic equation	7
	Eigen values and Eigen vectors of matrices	
	 Cayley Hamilton theorem (statement only) and its use to find the inverse of a Matrix 	
Unit IV	Matrix Transformation:	
	Two and Three-dimensional Matrix Transform	o
	Application of matrices to Scaling & Shearing	8
	Application of Matrices to Reflection, Rotation & Translation	

Study Resources

- Datta, K. B. (2000). *Matrix and Linear Algebra*. Prentice Hall of India Pvt. Ltd, New Delhi.
- Shanti, N. (2012). A Text Book of Matrices. S. Chand Limited, New Delhi.
- Bronson, R. (1989). Schaum's Outline of Theory and Problems of matrices. McGraw-Hill, New York.
- John, V. (2010). *Mathematics for Computer Graphics*. Springer-Verlag London.

F.Y.B.Sc. Mathematics (Major) SEMESTER-I MTH-DSC-113: Theory of Equations

Course Objectives Course Outcomes	 To study Principle of Mathematical Induction and Divisibility of numbers. To study roots of polynomial equations and Fundamental theorem of algebr To know relations between roots and coefficients of polynomials of degree To know roots of cubic equations by using Cardon's method, biquadratic equations by Descarte's method and roots of polynomial equation s by Newton's method. After successful completion of this course, students are expected to: use of Principle of Mathematical Induction and understand Divisibility of numbers with their properties. find out roots of any equation of degree less than or equal to five. know the relation between roots and coefficient of quadratic, cubic and biquadratic equations and their use for finding the roots of equation. use of Cardon's method, Descarte's method for solving equations. 	
Unit	Content	Hours
	 Divisibility of Integers: Natural numbers Well ordering principal (statement only) Principle of Mathematical Induction Divisibility of integers and theorems Division algorithm GCD and LCM Euclidean algorithm Unique factorization theorem Polynomials: 	7
	 Revision of Polynomials Horner's method of synthetic division Existence and uniqueness of GCD of two polynomials Polynomial equations Factor theorem and generalized factor theorem for polynomials Fundamental theorem of algebra (Statement only) Methods to find common roots of polynomial equation Descarte's rule of signs Newton's method of divisors for the integral roots 	8
Unit III	 Theory of Equations-I: Relation between roots and coefficient of general polynomial equation in one variable Relation between roots and coefficient of quadratic cubic and biquadratic equations Symmetric functions of roots 	7

Unit IV	Theory of Equations –II: Transformation of equations Cardon's method of solving cubic equations Biquadratic equations Descarte's method of solving biquadratic equations	8
Study Resources	 Burton, D. M. (1989). Elementary Number Theory. W. C. Brown publishers, Dubuquolowa. Hall, H. S., and Knight, S. R. (1994). Higher Algebra. H. M. Publications. Datta, K. B. (2000). Matrix and Linear Algebra. Prentice Hall of India Pvt. Ltd., New Delhi. Sharma, D. R. Theory of Equations. Sharma Publications, Jalandhar. 	

F.Y.B.Sc. Mathematics (Minor) SEMESTER-I MTH-MIN-111: Set Theory and Logic

Course Objectives	To acquire concepts of sets, operations on sets, Venn diagrams, countable and uncountable sets.	ole
	 To acquire concepts of relations, equivalence relations, functions and the types. 	neir
	 To acquire concepts of statements, truth values and logical equivalence To acquire concepts of universal and existential quantifiers. 	S.
Course	After successful completion of this course, students are expected to:	
Outcomes	 uses of the language of set theory, designing issues in different subjet of mathematics. Also understand the issues associated with different types of finite and infinite sets via countable and uncountable sets. learn how to identify, represent and recognize relations and functions. 	ent
	from schematic descriptions, arrow diagrams and graphs.	7113
	 use truth tables and logical operators to solve the mathematical problem 	ıs.
	 provide the logical mathematical reasoning to formulate theorems a definitions. 	
Unit	Content	Hours
Unit I	Sets and Subsets:	
	Finite Set and Infinite set	
	Equality of two Sets,	
	Null Set, Subset, Proper subset and Symmetric difference of two sets	
	Universal set, Power set and Disjoint sets	7
	Operation on sets: Union and Intersection	
	Venn diagram	
	• Equivalent sets	
	Countable and uncountable sets	
Unit II	Relations and Functions:	
	Product of sets	
	Relations, Types of relations, Reflexive, Symmetric, Transitive	
	relations and Equivalence relations	8
	• Function, Types of functions, One-one, Onto, Even, Odd and Inverse	
	function	
	Composite functions	
Unit III	Algebra of Propositions:	
	Statements, Conjunction, Disjunction.	
	Negation, Conditional and Bi-Conditional statements, Propositions.	7
	Truth table, Tautology and Contradiction.	
	Logical equivalence and Logical equivalent statements	
Unit IV	Quantifiers:	
	Propositional functions and Truth sets	O
	Universal quantifier, Existential quantifier	8
	Negation of proposition which contain quantifiers and Counter	

	examples	
Study Resources	 Set Theory and Related Topics. Schaum's Series, McGraw-Hill, New York. Halmons, P. R. (1974). Naïve Set Theory (Revised ed.). Springer. Kamke, E. (1950). Theory of Sets, Dover Publishers. 	

F.Y.B.Sc. Mathematics (Minor) SEMESTER-I MTH-MIN-112: Matrix Algebra

Cor		1
Course objectives	 To know the basic need of this course is to understand the concepts applications of matrices. 	and
Ĭ	 It will improve problem solving and logical thinking abilities of the students 	
	 To study the concepts of theory of matrices in linear algebra. 	•
	To study the concepts of system of linear equation.	
	Upon successful completion of this course the student will be able to:	
outcomes	understand operations on matrices.	
	 understand the concept of rank of a matrix and inverse of a matrix. 	
	 understand the concept of eigenvalues and eigenvectors. 	
	 to use theory of matrices in solving linear equations. 	
Unit	Content	Hours
Unit I	Rank of Matrix:	
	Elementary operations on matrices	
	Adjoint of a matrix & Inverse of a matrix	
	Existence & uniqueness theorem of inverse of a matrix	
	Properties of inverse of a matrix	7
	Elementary matrices	
	Rank and normal form of a matrix	
	Reduction of a matrix to its normal form	
	Rank of product of two matrices	
Unit II	System of Linear Equations:	
	A homogeneous and non-homogeneous system of linear equations	
	Consistency of system of linear equations	8
	Application of matrices to solve the system of linear equations	
Unit III	Eigen Values & Eigen Vectors:	
	Orthogonal matrices and properties of orthogonal matrices	
	Characteristic equation	_
	Eigen values and Eigen vectors of matrices	7
	Cayley Hamilton theorem (statement only) and its use to find the	
	inverse of a Matrix	
Unit IV	Direct methods for solving linear system:	
	Matrix inversion method (3x3 system)	
	Gauss elimination method (3X3 system)	8
	Gauss Jordan method (3x3 system)	
Study	Datta, K. B. (2000). <i>Matrix and Linear Algebra</i> . Prentice Hall of India	
Resources	Pvt. Ltd, New Delhi.	
	• Shanti, N. (2010). A Text Book of Matrices. S. Chand Limited, New	
	Delhi.	
	Bronson, R. (1989). Schaum's Outline of Theory and Problems of	
	matrices. McGraw-Hill, New York.	
L	ı	l

F.Y.B.Sc. Mathematics (Open/Generic Elective) SEMESTER-I

MTH-OE-111: Mathematics for Competitive Exams-I

Course Objectives Course Outcomes	 The main aim of introducing Mathematics for Competative Examination-I students is to develop the skill to meet the competitive examinations for being job opportunities. Effort has been made to accommodate fundamental, mathematical aspects the instill confidence among students. Enrich their knowledge and to develop their logical reasoning thinking abililities. Attract the students to attain the mathematical problems and create interest students about mathematics. After successful completion of this course, students are expected to: have a strong base in the fundamental mathematical concepts. grasp the approaches and strategies to solve problems with speed and accuracy. gain appropriate skills to succeed in preliminary selection process for recruitment. 	o o
T • .	solve problems easily by using simple method.	ı
Unit	Content	Hours
Unit I	Numbers:	
	Number System	
	Types of Numbers	7
	• series (AP and GP)	
T T.	Algebraic operations BODMAS	
Unit II	Divisibility:	
	Divisibility	8
	LCM and HCF	
	Fraction and Simplification	
Unit III	Time and Distance:	
	Time and Distance	7
	Problems based on Trains	'
	Boats and Streams	
Unit IV	Clock and Calendar:	
	Time, work and wages	
	Pipes and Cistern	8
	Problems on Clock	
	Problems on Calendar	

Study Resources

- Aggarwal, R. S. (2018). *Quantitative Aptitude for Competitive Examinations* (Revised ed.). S. Chand and Co. Ltd, New Delhi.
- Praveen, R. V. Quantitative Aptitude and Reasoning. PHI publishers.
- Quantitative Aptitude: Numerical Ability (Fully Solved) Objective Questions. Kiran Prakashan, Pratogitaprakasan, Kic X, Kiran Prakasan publishers.
- Guha, A. *Quantitative Aptitude for Competitive Examination*. Tata Mc Graw hill publications.

F.Y.B.Sc. Mathematics (Major) SEMESTER-I MTH-SEC-111: Introduction to Scilab

Course outcomes	 Learn free and open-source software tools for computer programming. Understand the main features of the Scilab program development environ to enable its usage in the higher learning. Interpret and visualize simple mathematical functions and operations by plots. Implement simple mathematical functions/ equations in numerical computenvironment such as Scilab. Upon successful completion of this course the student will be able to: create and run Scilab code using required tools. apply Scilab code on matrices. 	using
	 understand how to apply Scilab code for simulation/implementation for the 	
	 verification of mathematical functions in Mechanical Engineering. apply Scilab code to solve numerical problems in the subjects of curriculum 	
Unit	2 2	Hours
Unit I	Content	Hours
	 Introduction to Scilab: Introduction and installation of Scilab Basic syntax and formatting command prompt display Operator precedence and variable browser window Predefined constants and mathematical operators Variable and strings Built in functions, complex numbers and polynomials 	7
Unit II	 Matrices: Construction of matrix Matrix multiplication and trace() Inverse of matrices, det() and rank() Deleting a row and/or column of a matrix Eigenvalues and eigenvector Mathematical matrix operations 	8
Unit III	Plotting: • 2D Plotting ○ plot(x,y) ○ plot2d() and plot2d2() ○ plot2d3() and plot2d4() • Plotting multiple plots in the same graph • 3D Plots	7

Unit IV	Some Applications:	
	Divisibility of integers	
	Inclusion exclusion principle	
	 Recursively defined functions 	8
	Sum rule principle	
	Product rule principle	
	Permutation and combination	
Study Resources	 Nagar, S. (2017). Introduction to Scilab: For Engineers and Scientists. Apress. 	
	• Eike, R. (2010). An Introduction to Scilab from a Matlab User's Point of View. INRIA.	
	• Chancelier, J., Delebecque, F., Gomez, C., Goursat, M., Nikoukhah, R., & Steer, S. (2007). <i>Introduction à Scilab</i> . Springer.	

F.Y.B.Sc. Mathematics (Major) SEMESTER-I MTH--SEC-112: Practical course on Scilab

Total Hours: 30 Credits: 1

Course	Create Scilab code using required tools.
objectives	Understand Scilab code to compute various operations on matrices.
	• Interpret and visualize simple mathematical functions and operations by using
	plots.
	Solve mathematical problems using Scilab.
Course	Upon successful completion of this course the student will be able to:
outcomes	 apply Scilab code to perform basic mathematical formulas.
	 run Scilab code to compute various operations on matrices.
	plotting various graphs using Scilab.
	apply Scilab for arithmetic operations.
Sr. No.	Content
1	Basics in Scilab
2	Mathematical Operators
3	Matrices
4	Operations on Matrices
5	2D Plotting
6	3D Plotting
7	Divisibility of Integers
8	Permutation and Combination
Study	Nagar, S. (2017). Introduction to Scilab: For Engineers and Scientists. Apress.
Resources	• Eike, R. (2010). An Introduction to Scilab from a Matlab User's Point of View. INRIA.
	 Chancelier, J., Delebecque, F., Gomez, C., Goursat, M., Nikoukhah, R., & Steer, S. (2007). <i>Introduction à Scilab</i>. Springer.

Practical No. 1 Basics in Scilab

- 1. Write a code in Scilab to compute the addition of three real numbers.
- 2. Write a code in Scilab to print out the string "Hello World!".
- 3. Write a code in Scilab to compute x^y .
- 4. Write a code in Scilab to compute cos x.
- 5. Write a code in Scilab to display the polynomial $x^3 + 5x^2 2x + 1$.

Practical No. 2 Mathematical Operators

- 1. Write a code in Scilab to compute the conjugate of a complex number.
- 2. Write a code in Scilab to change the type of a variable dynamically.

- 3. Write a code in Scilab to compute the roots of a quadratic equation $ax^2 + bx + c = 0$.
- 4. Write a code in Scilab to find the cardinality of the set $A = \{1, 3, 5, 7, 9\}$.
- 5. Write a code in Scilab to find the number of proper subsets of A ={Triangle, Rectangle, Square, Pentagon, Hexagon, Star}.

Practical No. 3 Matrices

- 1. Write a code in Scilab to creates the identity matrix of order $n \times n$.
- 2. Write a code in Scilab to compute the multiplication of two given matrixes.
- 3. Write a code in Scilab to compute the determinant of a given square matrix.
- 4. Write a code in Scilab to find the trace of a given matrix.
- 5. Write a code in Scilab to compute the inverse of a given square matrix.

Practical No. 4 Operations on Matrices

- 1. Write a code in Scilab to find the rank of a given matrix.
- 2. Write a code in Scilab to compute the transpose of a given matrix.
- 3. Write a code in Scilab to find a matrix or vector norm.
- 4. Write a code in Scilab to compute the eigenvalues and eigenvectors of a given square matrix.
- 5. Write a code in Scilab to compute the reduced row echelon form of a given matrix.

Practical No. 5 2D Plotting

- 1. Write a code in Scilab to plot the point A = (1, 2) with red point.
- 2. Use Scilab to plot the segment [AB] in blue (by default) with A = (1, 2) and B = (3, 5).
- 3. Use Scilab to plot $y = 2x^3$.
- 4. Distinguish the two functions $f(x) = x^2$ and $f(x) = 2x^2$ using Scilab.
- 5. Use Scilab to plotting sin x using plot2d.

Practical No. 6 3D Plotting

- 1. Use Scilab to plotting sin x using plot2d2.
- 2. Use Scilab to plotting sin x using plot2d3.
- 3. Use Scilab to plotting sin x using plot2d4.
- 4. Write a code in Scilab to plot the surface z = f(x, y).
- 5. Use Scilab to plot the surface $z = 2x^2 + y^2$.

Practical No. 7 Divisibility of Integers

1. Write a code in Scilab for the following inclusion exclusion problem:

Out of 1200 students of a college, 552 took Economics, 627 took Mathematics, 540 took Information Technology, 217 took Economics and Mathematics, 307 took Economics and Information

Technology, 240 took Mathematics and Information Technology, 213 took all the three subjects.

- a) How many took at least one of the three subjects?
- b) How many took none of the three subjects?

2. Write a code in Scilab for the following:

If
$$a_n = 3a_{n-1} - 2a_{n-2}$$
, $a_1 = 3$, $a_2 = 5$, then prove that $a_n = 1 + 2^n$, $\forall n \in \mathbb{N}$.

- 3. Write a code in Scilab to compute factorial by recursively defined functions.
- 4. Write a code in Scilab to evaluate the following polynomials:

a)
$$f(x) = x^3 - 2x + 1$$
 at $x = 2$.

b)
$$g(x) = x^2 - 1$$
 at $x = 3$.

5. Write a code in Scilab to compute greatest common divisor.

Practical No. 8 Permutation and Combination

- 1. Write a code in Scilab for the following problems:
 - a) Suppose a bookcase shelf has 6 Mathematics textbooks, 5 Programming textbooks and 3 Networking textbooks. Find the number of ways a student can choose a textbook.
 - b) Find number of ways to select an integer between 1 to 20 which are divisible by 4 or prime.
- 2. Write a code in Scilab for the following problems:
 - a) Suppose a bookcase shelf has 6 Mathematics textbooks, 5 Programming textbooks and 3 Networking textbooks. Find the number of ways a student can choose one of each type of textbook.
 - b) How many four-digit numbers can be formed with digits 0-9 if repetition of digits not allowed?
- 3. Write a code in Scilab to calculate Binomial Coefficient $\binom{n}{r}$, where n and r values are given by user (n=10 & r=7) and to verify $\binom{n}{r} = \binom{n}{n-r}$ (for n=8 & r=5).
- 4. Write a code in Scilab for the following:
 - a) A teacher is preparing an examination time table for 5 papers to be held on 5 consecutive days. How many different time table can she make?
 - b) A manager has 10 persons working under him and he is expected to award 3 prizes to the persons whom he ranks are the top three achievers in the previous year. How many choices does he have?
- 5. Write a code in Scilab for the following:
 - a) In how many ways can a committee of 8 people be formed out of a group of 10 men and 5 women?
 - b) In how many ways can a committee of 6 men and 2 women be formed out of a group of 10 men and 5 women?

SEMESTER-II

F.Y.B.Sc. Mathematics (Major) SEMESTER-II MTH-DSC-121: Calculus-II

Course Objectives	 Use the fact that the derivative is the slope of the tangent line to the curve given point to help determine the derivatives of simple linear functions. The basic need of this course is to understand the concepts Limits, Deri and applications of calculus. Use the Intermediate Value Theorem to identify an interval where a contifunction has a root. This course will improve problem solving and logical thinking abilities students. After successful completion of this course, students are expected to: understand basic concepts on limits and continuity. understand use of differentiations in various theorems. know the Mean value theorems and its applications. make the applications of Taylor's, Maclaurin's theorem. 	vative nuous
Unit	Content	Hours
Unit I	Limit and Continuity	
	Epsilon-delta definition of limit of a function	
	Basic properties of limit, Indeterminate form	
	L-Hospital's rule	
	Examples of limit	7
	Continuous function	'
	 Properties of continuous function on closed and bounded interval. 	
	o Boundedness	
	 Attains its bounds 	
	 Indeterminate mean value theorem 	
Unit II	Mean Value Theorems	
	Differentiability	
	Definition of derivative	
	Theorem on continuity and examples P. W	
	Roll's theorem Longrage's Mean value theorem	0
	Langrage's Mean value theoremCauchy's mean value theorem	8
	Examples on Roll's theorem	
	 Langrage's Mean value theorem & Cauchy's mean value theorem 	
	Geometrical interpretation and application	
	Increasing and Decreasing function	
Unit III	Successive Differentiation	
	The nth derivative of some standard functions:	
	$\circ e^{ax+b}$	
	$\circ x^m$	7
	$\circ (ax+b)^m$	'
	$0 \frac{1}{1}$	
	ax+b	
	$\circ \log(ax+b)$	

Unit IV	o $\sin(ax + b)$ o $\cos(ax + b)$ o $e^{ax}\sin(ax + b)$ o $e^{ax}\cos(ax + b)$ • Leibnitz's Theorem and examples on it Application of differential Calculus • Taylor's theorem with Lagrange's form of remainder and related examples • Maclaurin' theorem with Lagrange's form of remainder and related examples • Reduction formulae o $\int_0^{\pi/2} (\sin x)^n dx$ o $\int_0^{\pi/2} (\cos x)^n dx$ o $\int_0^{\pi/2} (\sin x)^m (\cos x)^n dx$	8
	$\int_0^{\infty} \left(\frac{\sin x}{\sin x}\right) dx \text{ and examples on it}$	
Study Resources	 Wrede, R., and Spiegel M. R. (2002). Theory and Problems of Advanced Calculus (2nded.). McGraw-Hill Company, New York. Prasad, G. (1959). Text Book on Differential calculus. Pothishala Private Ltd., Allahabad. Prasad, G. Integral calculus. Pothishala Private Ltd., Allahabad. Maron, I. A. Problems in Calculus of One Variable. CBS Publishers & Distributors 	

F.Y.B.Sc. Mathematics (Major) SEMESTER-II

MTH-DSC-122: Ordinary Differential Equations

Unit I Differential Equations of First Order and First Degree: Partial derivatives of first order & second orders and Examples Exact differential equations Condition for exactness Integrating factor Rules for finding integrating factors Linear differential equations Bernoulli's Differential Equation Equation reducible to linear form Unit II Differential Equations of First Order and Higher Degree: Differential equations of first order and higher degree Equation solvable for p Equation solvable for x Clairaut's form Unit III Linear Differential Equations of Second and Higher Order: Linear differential equations with constant coefficients	Course Objectives Course Outcomes	 The basic need of this course is to understand the different methods of solv differential equations and their applications to solve problems arrives in engineering and technology. Evaluate first order differential equations including homogeneous, exact an linear differential equations. Solve second order and higher orders linear differential equations. To know the concept of homogeneous linear differential equations. After successful completion of this course, students are expected to: understand basic concepts in differential equations. understand method of solving differential equations understand the method of solving the homogeneous linear differential equation. 	
Partial derivatives of first order & second orders and Examples Exact differential equations Condition for exactness Integrating factor Rules for finding integrating factors Linear differential equations Bernoulli's Differential Equation Equation reducible to linear form Unit II Differential Equations of First Order and Higher Degree: Differential equations of first order and higher degree Equation solvable for p Equation solvable for y Equation solvable for x Clairaut's form Unit III Linear Differential Equations of Second and Higher Order: Linear differential equations with constant coefficients	Unit	Content	Hours
Differential equations of first order and higher degree Equation solvable for p Equation solvable for y Equation solvable for x Clairaut's form Unit III Linear Differential Equations of Second and Higher Order: Linear differential equations with constant coefficients	Cint 1	 Partial derivatives of first order & second orders and Examples Exact differential equations Condition for exactness Integrating factor Rules for finding integrating factors Linear differential equations Bernoulli's Differential Equation 	7
• Particular integrals of $f(D)y = X$, where $X =$		 Differential equations of first order and higher degree Equation solvable for p Equation solvable for y Equation solvable for x Clairaut's form Linear Differential Equations of Second and Higher Order: Linear differential equations with constant coefficients Complementary functions 	

Unit IV	 Homogeneous Linear Differential Equations: Homogeneous linear differential equations (Cauchy's differential equations) Example of Homogeneous linear differential equations Equations reducible to homogeneous linear differential equations (Legendre's equations) Example of Equations reducible to homogeneous linear differential equations 	8
Study Resources	 Murray, D. A. (1967). Introductory Course in Differential Equations. Orient Congman (India). Simmons, G. F. (1972). Differential Equations, Tata McGraw Hill. 	

F.Y.B.Sc. Mathematics (Major) SEMESTER-II MTH-DSC-123: Numerical Analysis

Course objectives Course outcomes	 To study the basic numerical analysis which is applicable to problems finding interpolation and solution of first order differential equations. To know approximate solutions can be obtained by using numerical method To know concept of Numerical methods to develop mathematical skill solving various scientific problems. To know concept of numerical integration with the help of various form and rules. Upon successful completion of this course the student will be able to: understand basic concepts of methods of solutions of equations. understand methods of forward and backward differences. find solution of numerical integration by Trapezoidal rule, Simpson's one-rule. 	ls in nulae
T 7 • .	apply appropriate numerical methods to solve the problem with most accurate.	ıcy.
Unit	Content	Hours
	 Algebraic and Transcendental Equation: Introduction to Errors The Bisection method The iteration method Method of False position Newton-Raphson Method Calculus of Finite Differences: Differences Forward Differences Backward Differences Central Differences Other Differences (Δ, μ operators) Properties of Operators Relation between Operators 	8
Unit III	Interpolation: Newton's Gregory Formula for Forward interpolation Newton's Gregory Formula for Backward Interpolation Lagrange's Interpolation Formula Divided Difference Newton's Divided Difference Formula	7
Unit IV	Numerical Integration: General Quadrature Formula Trapezoidal Rule Simpson's One-Third Rule Simpson's Three-Eight Rule	8

Study resources

- Shastry, S. S. (2012). *Introductory Methods of Numerical Analysis* (5th ed). Prentice Hall India Learning Private Limited, New Delhi.
- Froberg, Carl-Erik, (1979). *Introduction to Numerical Analysis* (2nd ed). Addison-Wesley, California London
- Jain, M. K., Iyenger, S. R. K., & Jain, R. K. (1999). *Numerical methods for scientific and engineering computation*. New Age International Publisher Pvt. Ltd., New Delhi.
- Saxena, H. C. (2005). Finite differences and Numerical Analysis, S. Chand and Company.
- Atkinson, K. E. (1989). *An Introduction to Numerical Analysis*(2nd ed). Wiley Publications, Canada.

F.Y.B.Sc. Mathematics (Minor) SEMESTER-II MTH-MIN-121: Discrete Mathematics

Total Hours: 30

Credits: 2

Course Objectives Course Outcomes	 To study the basic problems on permutation and combinations. To know discrete numeric functions and generating functions. To know the basic concept of graphs and their matrix representation. To know the concept of finite state machines as language recognizers. After successful completion of this course, students are expected to: Understand basic concepts of permutation and combinations and can apply to real life situation. Understand the use of discrete numeric functions and generating functions combinatorial problems. Understand graph, isomorphism of graphs, Hand-shaking lemma, adjacency and incidence matrix representation of graphs. Understand the use of finite state machine to recognize patterns. 	for y
	Content	Hours
	 Permutation and Combination: Meaning of permutation and combination Fundamental principle of counting Meaning of Factorial of a number Statement of basic properties of factorial of a number Statement of formula for number of permutations of different objects when objects are taken at a time Statement of formula for number of combinations of different objects taken at a time Simple numerical problems from real life situations 	7
	 Discrete Numeric Functions: Discrete numeric functions Operations on numeric functions Asymptotic behavior of numeric functions Properties of asymptotic dominance Generating functions Combinatorial problems 	8
Unit III	 Fundamentals of Graph Theory: Graph Simple graph Degree of vertex Hand-shaking lemma Isomorphism of graphs Adjacency and incidence matrix of a graph 	7

Unit IV	Formal Languages and Finite State Machines:	
	Ordered sets	
	• Languages	
	Phrase structure grammars	8
	Types of grammars and languages	
	Equivalent Machines	
	Finite state machines as language recognizers	
Study Resources	 Ghosh, R. K., and Saha, S. (2008). Business Mathematics and Statistics(2nd.ed.). New Central Book Agency (P) Ltd. Lipschutz, S., Lipson, M. L., and Patil, V. H. (2006). Discrete Mathematics (3rd.ed.). Tata McGraw Hill Publishing Company Limited. Deo, N. Graph Theory with applications to Engineering and computer science. Prentice Hall of India Pvt. Ltd. Liu, C. L. Elements of Discrete Mathematics (2nd.ed.). Mc Graw Hill. 	

F.Y.B.Sc. Mathematics (Minor) SEMESTER-II MTH-MIN-122: Numerical Methods

Course objectives	 To study the basic numerical analysis which is applicable to problems like interpolation and solution of first order differential equations. 	e finding
objectives	 To know approximate solutions can be obtained by using numerical method 	de
	 To know approximate solutions can be obtained by using numerical method To know concept of Numerical methods to develop mathematical skills in 	
	various scientific problems.	1 SOLVING
	 To know concept of numerical solution of ordinary differential equations. 	
Course	Student will be able to:	
outcomes	 understand basic concepts of methods of solutions of equations. 	
	 understand methods of forward and backward differences. 	
	• find solution of ordinary differential equation of first order by Euler, Ta	ylor and
	Runge-kutta methods.	
	 apply appropriate numerical methods to solve the problem with most accur 	acy.
Unit	Content	Hours
Unit I	Algebraic and Transcendental Equation:	
	Introduction to Errors	
	The Bisection method	7
	The iteration method	'
	Method of False position	
	Newton-Raphson Method	
Unit II	Calculus of Finite Differences:	
	• Differences	
	Forward Differences	
	Backward Differences Out of Birth Out	8
	• Central Differences	
	 Other Differences (∇, μ operators) 	
	Properties of Operators	
	Relation between Operators	
Unit III	Interpolation:	
	Newton's Gregory Formula for Forward interpolation	
	Newton's Gregory Formula for Backward Interpolation	7
	Lagrange's Interpolation Formula Print 1 Description Output Description De	
	 Divided Difference Newton's Divided Difference Formula 	
Unit IV	Numerical Solution of Ordinary Differential Equation:	
	Numerical solution of first order ODE by Taylor's series Solution S	
	Euler's Method, Euler's Modified Method	8
	Runge-Kutta Methods	
	Runge–Kutta second and fourth order formulae	

Study resources

- Shastry, S. S. (2012). *Introductory Methods of Numerical Analysis* (5th ed), Prentice Hall India Learning Private Limited, New Delhi.
- Froberg, Carl-Erik. (1979). *Introduction to Numerical Analysis* (2nd ed). Addison-Wesley, California London
- Jain, M. K., Iyenger S. R. K., & Jain, R. K. (1999). *Numerical methods for scientific and engineering computation*. New Age International Publisher Pvt. Ltd., New Delhi.
- Saxena, H. C. (2005). Finite differences and Numerical Analysis, S. Chand and Company.
- Atkinson, K. E. (1989). *An Introduction to Numerical Analysis*(2nd ed). Wiley Publications, Canada.

F.Y.B.Sc. (Open/Generic Elective) SEMESTER-II

MTH-OE-121: Mathematics for Competitive Exams-II

Course Objectives Course Outcomes	 The main aim of introducing Mathematics for Competative Examination-I for students is to develop the skill to meet the competitive examinations for better job opportunities. Effort has been made to accommodate fundamental, mathematical aspects to instill confidence among students. Enrich their knowledge and to develop their logical reasoning thinking abililities. Attract the students to attain the mathematical problems and create interest in students about mathematics. After successful completion of this course, students are expected to: have a strong base in the fundamental mathematical concepts. grasp the approaches and strategies to solve problems with speed and accuracy. gain appropriate skills to succeed in preliminary selection process for recruitment. solve problems easily by using simple method. 	
Unit	Content	Hours
Unit II	Percentage and Average Percentage, Average Problems based on Ages Ratio and Proportion Partnership and Share: Partnership and share Mixtures. Shares and Debentures Profit, Loss and Discount: Profit, Loss and Discount Simple Interest Compound Interest	8
Study Resources	 Permutations and Combinations: Probability True discount and Banker's discount Aggarwal, R. S. (2018). Quantitative Aptitude for Competitive Examinations (Revised ed.). S. Chand and Co. Ltd, New Delhi. Praveen, R. V. Quantitative Aptitude and Reasoning. PHI publishers. Quantitative Aptitude: Numerical Ability (Fully Solved) Objective Questions. Kiran Prakashan, Pratogitaprakasan, Kic X, Kiran Prakasan publishers. Guha, A. Quantitative Aptitude for Competitive Examination. Tata Mc Graw hill publications. 	8

F.Y.B.Sc. Mathematics (Major) SEMESTER-II MTH-SEC-121: Introduction to Python

Course objectives Course outcomes	 Understand the core syntax and semantics of Python programming language. Familiarize the process of structuring the data using lists, dictionaries, tuples and sets. Illustrate the use of regular expressions and built-in functions to navigate the file system. Find the applications of Python in a real life. Jpon successful completion of this course the student will be able to: create and run Python programs using required tools. explain basic principles of Python programming language. implement object-oriented concepts. apply Python program to solve numerical problems in the subjects of curriculum. 	
Unit	Content	Hours
Unit I	 Introduction to Python: Introduction and installation of Python Values and types (int, float and str) Print function, assignment statements and printing variable values Types of variables Operators (mathematical Operators, arithmetic operator, relational operator, boolean operator) String operations and mathematical functions (math, cmath modules, random module) 	7
Unit II	 String, List and Tuple: Strings, len function, string traversal String slice, comparison operators Lists, list operations, use of range function and accessing list elements List membership, for loop, list operations and updating list Defining a tuple, index operator and slice operator Tuple assignment and tuple as a return value 	
Unit III	 Iterations and Conditional Statements: Conditional and alternative statements Chained and nested conditionals (if, if-else, if-elif-else, nested if, nested if-else) Looping statements (while, for) Tables using while, calling functions (type, id) Composition of functions, returning values from functions User defined functions, parameters and arguments 	7

Unit IV	Some Applications:		
	 Installation of NumPy and SciPy 		
	 Addition, subtraction, multiplication of matrices 		
	 Powers and inverse of a matrices 		
	Reduced row echelon form, null space, column space and rank	8	
	Determinant, eigenvalues and eigenvectors		
	Roots of polynomials		
Study Resources	Downey, A. (2015). Think Python: How to Think Like a Computer Scientist (2nd ed.). O'Reilly Media, Inc.		
	• Johansson, R. (2019). Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib (2nd ed.). Apress.		
	• Langtangen, H. P. (2009). <i>Python Scripting for Computational Science</i> (3rd ed.). Springer Berlin Heidelberg.		

F.Y.B.Sc. Mathematics (Major) SEMESTER-II MTH-SEC-122: Practical course on Python

Total Hours: 30 Credits: 1

Course	Create and run Python program using required tools.	
objectives	Use built-in data structure and modules in Python.	
	• Interpret and visualize simple mathematical functions and operations by using	
	plots.	
	Understand Python program to compute various operations on matrices.	
Course	Upon successful completion of this course the student will be able to:	
outcomes	 apply Python program to perform basic mathematical formulas. 	
	write Python program for mathematical functions.	
	apply Python program for arithmetic operations.	
	run Python program to compute various operations on matrices.	
Sr. No.	Content	
1	Basics in Python	
2	Operators	
3	String and List	
4	Tuple	
5	Conditional Statements	
6	Functions	
7	Linear Algebra in Python	
8	Mathematical Matrix Operations	
Study Resources	Downey, A. (2015). Think Python: How to Think Like a Computer Scientist (2nd ed.). O'Reilly Media, Inc.	
	Johansson, R. (2019). Numerical Python: Scientific Computing and Data	
	Science Applications with Numpy, SciPy and Matplotlib (2nd ed.). Apress.	
	 Langtangen, H. P. (2009). Python Scripting for Computational Science (3rd ed.). Springer Berlin Heidelberg. 	

Practical No. 1 Basics in Python

1. Write a Python program to print the following string in a specific format (see the output).

Sample String: "Twinkle, twinkle, little star, How I wonder what you are! Up above the world so high, Like a diamond in the sky. Twinkle, twinkle, little star, How I wonder what you are"

Output:

Twinkle, twinkle, little star,

How I wonder what you are!

Up above the world so high,

Like a diamond in the sky.

Twinkle, twinkle, little star,

How I wonder what you are

- 2. Write a Python program to find out what version of Python you are using.
- 3. Write a Python program to display the current date and time.

Sample Output:

Current date and time:

2014-07-05 14:34:14

4. Write a Python program that calculates the area of a circle based on the radius entered by the user.

Sample Output:

r = 1.1

Area = 3.8013271108436504

5. Write a Python program that accepts the user's first and last name and prints them in reverse order with a space between them.

Practical No. 2 Operators

1. Write a Python program to display the examination schedule. (extract the date from exam_st_date).

 $exam_st_date = (11, 12, 2014)$

Sample Output: The examination will start from: 11 / 12 / 2014

2. Write a Python program that accepts a filename from the user and prints the extension of the file.

Sample filename: abc.java

Output: java

3. Write a Python program that prints the calendar for a given month and year.

Note: Use 'calendar' module.

- 4. Write a Python program to get the volume of a sphere with radius six.
- 5. Write a Python program to calculate the number of days between two dates.

Sample dates: (2014, 7, 2), (2014, 7, 11)

Expected output: 9 days

Practical No. 3 String and List

- 1. Write a Python program to create a histogram from a given list of integers.
- 2. Write a Python program to display the first and last colors from the following list.

color_list = ["Red","Green","White","Black"]

3. Write a Python program that accepts an integer (n) and computes the value of n + nn + nnn.

Sample value of n is 5

Expected Result: 615

4. Write a Python program to sum all the items in a list.

5. Write a Python program to get n (non-negative integer) copies of the first 2 characters of a given string. Return n copies of the whole string if the length is less than 2.

Practical No. 4 Tuple

- 1. Write a Python program that concatenates all elements in a list into a string and returns it.
- 2. Write a Python program to parse a string to float or integer.
- 3. Write a Python program to create a tuple of numbers and print one item.
- 4. Write a Python program that accepts a sequence of comma-separated numbers from the user and generates a list and a tuple of those numbers.

```
Sample data: 3, 5, 7, 23

Output:

List: ['3', '5', '7', '23']

Tuple: ('3', '5', '7', '23')
```

5. Write a Python program to print all even numbers from a given list of numbers in the same order and stop printing any after 237 in the sequence.

Sample numbers list:

```
numbers = [
386, 462, 47, 418, 907, 344, 236, 375, 823, 566, 597, 978, 328, 615, 953, 345,
399, 162, 758, 219, 918, 237, 412, 566, 826, 248, 866, 950, 626, 949, 687, 217,
815, 67, 104, 58, 512, 24, 892, 894, 767, 553, 81, 379, 843, 831, 445, 742, 717,
958,743, 527
```

Practical No. 5 Conditional Statements

- 1. Write a Python program to find those numbers which are divisible by 7 and multiples of 5, between 1500 and 2700 (both included).
- 2. Write a Python program to construct the following pattern, using a nested for loop.

3. Write a Python program that prints all the numbers from 0 to 6 except 3 and 6.

Note: Use 'continue' statement.

Expected Output: 0 1 2 4 5

4. Write a Python program to get the Fibonacci series between 0 and 50.

Note: The Fibonacci Sequence is the series of numbers:

Every next number is found by adding up the two numbers before it.

Expected Output: 1 1 2 3 5 8 13 21 34

5. Write a Python program that accepts a sequence of comma separated 4 digit binary numbers as its input.

The program will print the numbers that are divisible by 5 in a comma separated sequence.

Sample Data: 0100,0011,1010,1001,1100,1001

Expected Output: 1010

Practical No. 6 Functions

1. Write a Python program that accepts a string and calculates the number of digits and letters.

Sample Data: Python 3.2

Expected Output:

Letters 6

Digits 2

- 2. Write a Python program to find numbers between 100 and 400 (both included) where each digit of a number is an even number. The numbers obtained should be printed in a comma-separated sequence.
- 3. Write a Python program to print the alphabet pattern 'M'.

Expected Output:

- * *
- * *
- * * * *
- * * *
- * *
- * *
- * *
- 4. Write a Python program to check whether an alphabet is a vowel or consonant.

Expected Output:

Input a letter of the alphabet: k

k is a consonant.

5. Write a Python program to find the median of three values.

Practical No. 7 Linear Algebra in Python

1. Write a NumPy program to compute the multiplication of two given matrixes.

- 2. Use Python to compute the determinant of $A = \begin{bmatrix} 6 & 1 & 1 \\ 4 & -2 & 5 \\ 2 & 8 & 7 \end{bmatrix}$.
- 3. Write a NumPy program to compute the eigenvalues and right eigenvectors of a given square array.
- 4. Use Python to compute the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.
- 5. Write a NumPy program to find the rank of a given matrix.

Practical No. 8 Mathematical Matrix Operations

- 1. Use Python to compute the reduced row echelon form of $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 4 & 10 & 12 \end{bmatrix}$.
- 2. Use Python to compute the null space of $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$.
- 3. Write a NumPy program to compute the condition number of a given matrix.
- 4. Write a NumPy program to find a matrix or vector norm
- 5. Write a NumPy program to find the roots of the following polynomials.

a)
$$x^2 - 4x + 7$$
.

b)
$$x^4 - 11x^3 + 9x^2 + 11x - 10$$
.

Equivalence F.Y. B.Sc. Mathematics

Old syllabus AY 2019-20	NEP based syllabus AY 2023-24			
SEM-I				
MTH-111 Calculus	MTH-DSC-111 Calculus-I			
MTH-112 Co-ordinate Geometry	MTH-MIN-121 Discrete Mathematics			
MTH-113(A) Matrix Algebra	MTH-MIN-112 Matrix Algebra			
MTH-113(B) Applied Matrix Algebra	MTH-DSC-112 Theory of Matrices			
SEM-II				
MTH-121 Ordinary Differential Equations	MTH-DSC-122 Ordinary Differential Equations			
MTH-122 Theory of Equations	MTH-DSC-113 Theory of Equations			
MTH-123(A) Numerical Analysis	MTH-DSC-123 Numerical Analysis			
MTH-123(B) Numerical Methods	MTH-MIN-122 Numerical Methods			

AY: Academic Year